Skip to main content
Log in

Non-compact \(\text {RCD}(0,N)\) Spaces with Linear Volume Growth

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Since non-compact \(\text {RCD}(0, N)\) spaces have at least linear volume growth, we study non-compact \(\text {RCD}(0,N)\) spaces with linear volume growth in this paper. One of the main results is that the diameter of level sets of a Busemann function grows at most linearly on a non-compact \(\text {RCD}(0,N)\) space satisfying the linear volume growth condition. Another main result in this paper is a rigidity theorem at the non-compact end for a \(\text {RCD}(0,N)\) space with strongly minimal volume growth. These results generalize some theorems on non-compact manifolds with non-negative Ricci curvature to non-smooth settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N.: Lecture Notes in Mathematics. A User’s Guide to Optimal Transport. Modelling and Optimisation of Flows on Networks. Springer, Heidelberg (2011)

    Google Scholar 

  2. Ambrosio, L., Mondino, A., Savaré, G.: On the Bakry-Émery condition, the gradient estimates and the local-to-global property of \(\text{ RCD }^{*}(K, N)\) metric measure spaces. J. Geom. Anal. 26, 24–56 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L., Mondino, A., Savaré, G.: Nonlinear diffusion equations and curvature conditions in metric measure spaces. arXiv:1509.07273 (2015) (to appear in Mem. Am. Math. Soc.)

  4. Ambrosio, L., Gigli, N., Savaré, G.: Lectures in Mathematics. Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edn. ETH Zürich, Birkhäuser, Basel (2008)

    MATH  Google Scholar 

  5. Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent. Math. 195, 289–391 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J. 163, 1405–1490 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ambrosio, L., Gigli, N., Mondino, A., Rajala, T.: Riemannian Ricci curvature lower bounds in metric spaces with \(\sigma \)-finite measure. Trans. Am. Math. Soc. 367, 4661–4701 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bianchini, S., Cavalletti, F.: The Monge problem for distance cost in geodesic spaces. Commun. Math. Phys. 318, 615–673 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bianchini, S., Caravenna, L.: On the extremality, uniqueness and optimality of transference plans. Bull. Inst. Math. Acad. Sin. (N.S.) 4, 353–454 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Bacher, K., Sturm, K.-T.: Localization and tensorization properties of the curvature-dimension condition for metric measure spaces. J. Funct. Anal. 259, 28–56 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Calabi, E.: On manifolds with non-negative Ricci-curvature II. Not. Am. Math. Soc. 22, A205 (1975)

    Google Scholar 

  12. Cavalletti, F.: Monge problem in metric measure spaces with Riemannian curvature-dimension condition. Nonlinear Anal. 99, 136–151 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cavalletti, F., Huesmann, M.: Existence and uniqueness of optimal transport maps. Ann. Inst. H. Poincaré Anal. Non Linéaire 32, 1367–1377 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cavalletti, F., Mondino, A.: Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds. Invent. Math. (2016). doi:10.1007/s00222-016-0700-6

  15. Cavalletti, F., Mondino, A.: Sharp geometric and functional inequalities in metric measure spaces with lower Ricci curvature bounds. Geom. Topol. 21, 603–645 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cavalletti, F., Mondino, A.: Optimal maps in essentially non-branching spaces. Commun. Contemp. Math. (2016). doi:10.1142/S0219199717500079

  17. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 428–517 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cheeger, J., Colding, T.H.: Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. Math. 144, 189–237 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below. I. J. Differ. Geom. 46, 406–480 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below. II. J. Differ. Geom. 54, 13–35 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below. III. J. Differ. Geom. 54, 37–74 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cheeger, J., Gromoll, D.: The splitting theorem for manifolds of nonnegative Ricci curvature. J. Differ. Geom. 6, 119–128 (1971/72)

  23. De Philippis, G., Gigli, N.: From volume cone to metric cone in the nonsmooth setting. Geom. Funct. Anal. 26, 1526–1587 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Erbar, M., Kuwada, K., Sturm, K.T.: On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure space. Invent. Math. 201, 993–1071 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fremlin, D.H.: Measure Theory, vol. 4. Torres Fremlin, Colchester (2002)

    MATH  Google Scholar 

  26. Garofalo, N., Mondino, A.: Li-Yau and Harnack type inequalities in \(\text{ RCD }^{*}(K, N)\) metric measure spaces. Nonlinear Analysis: Theory, Methods & Applications 95, 721–734 (2014)

    Article  MATH  Google Scholar 

  27. Gigli, N.: Optimal maps in non branching spaces with Ricci curvature bounded from below. Geom. Funct. Anal. 22, 990–999 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gigli, N.: On the Differential Structure of Metric Measure Spaces and Applications, vol. 236. Memoirs of the American Mathematical Society, Providence (2015)

  29. Gigli, N.: Nonsmooth differential geometry-an approach tailored for spaces with Ricci curvature bounded from below. arXiv:1407.0809 (2014) (to appear in Mem. Am. Math. Soc)

  30. Gigli, N.: The splitting theorem in non-smooth context. arXiv:1302.5555 (2013)

  31. Gigli, N.: An overview of the proof of the splitting theorem in spaces with non-negative Ricci curvature. Anal. Geom. Metr. Spaces 2, 169–213 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Gigli, N., Han, B.: Sobolev spaces on warped products. arXiv:1512.03177v1 (2015)

  33. Gigli, N., Rajala, T., Sturm, K.-T.: Optimal maps and exponentiation on finite-dimensional spaces with Ricci curvature bounded from below. J. Geom. Anal. 26, 2914–2929 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gigli, N., Mondino, A.: A PDE approach to nonlinear potential theory in metric measure spaces. J. Math. Pures Appl. 100, 505–534 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Gigli, N., Mondino, A., Rajala, T.: Euclidean spaces as weak tangents of infinitesimally Hilbertian metric measure spaces with Ricci curvature bounded below. J. Reine Angew. Math. 705, 233–244 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Jiang, Y., Zhang, H.C.: Sharp spectral gaps on metric measure spaces. Calc. Var. PDE 55, 14 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ketterer, C.: Cones over metric measure spaces and the maximal diameter theorem. J. Math. Pures Appl. 103, 1228–1275 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2) 169, 903–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lott, J., Villani, C.: Weak curvature conditions and functional inequalities. J. Funct. Anal. 245, 311–333 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mondino, A., Naber, A.: Structure theory of metric-measure spaces with lower Ricci curvature bounds I. arXiv:1405.2222 (2014)

  41. Ohta, Shin-ichi: On the measure contraction property of metric measure spaces. Comment. Math. Helv. 82, 805–828 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rajala, T.: Local Poincaré inequalities from stable curvature conditions on metric spaces. Calc. Var. PDE. 44, 477–494 (2012)

    Article  MATH  Google Scholar 

  43. Rajala, T.: Interpolated measures with bounded density in metric spaces satisfying the curvature-dimension conditions of Sturm. J. Funct. Anal. 263, 896–924 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Rajala, T., Sturm, K.T.: Non-branching geodesics and optimal maps in strong \(\text{ CD }(K,\infty )\)-spaces. Calc. Var. PDE. 50, 831–846 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sormani, C.: The almost rigidity of manifolds with lower bounds on Ricci curvature and minimal volume growth. Commun. Anal. Geom. 8, 159–212 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sormani, C.: Busemann functions on manifolds with lower bounds on Ricci curvature and minimal volume growth. J. Differ. Geom. 48, 557–585 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  47. Sturm, K.T.: On the geometry of metric measure spaces I. Acta Math. 196, 65–131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sturm, K.T.: On the geometry of metric measure spaces II. Acta Math. 196, 133–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  49. Villani, C.: Optimal transport, Old and New. Grundlehren der Mathematischen Wissenschaften, vol. 338. Springer, Berlin (2009)

    Google Scholar 

  50. Yau, S.-T.: Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry. Indiana Math. J. 25, 659–670 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhang, H.C., Zhu, X.P.: Ricci curvature on Alexandrov spaces and rigidity theorems. Commun. Anal. Geom. 18, 503–553 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhang, H.C., Zhu, X.P.: Local Li-Yau’s estimates on \(\text{ RCD }^{*}(K, N)\) metric measure spaces. Calc. Var. PDE 55, 93 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. X.P. Zhu, B.L. Chen, and H.C. Zhang for their encouragements and helpful discussions. The author is grateful to the anonymous referees for careful reading and giving many valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Tao Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, XT. Non-compact \(\text {RCD}(0,N)\) Spaces with Linear Volume Growth. J Geom Anal 28, 1005–1051 (2018). https://doi.org/10.1007/s12220-017-9852-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-017-9852-x

Keywords

Mathematics Subject Classification

Navigation