Skip to main content
Log in

Stochastic Completeness and the Omori–Yau Maximum Principle

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

A Riemannian manifold M is said to satisfy the Omori–Yau maximum principle if for any \(C^2\) bounded function \(g:M\rightarrow {\mathbb {R}}\) there is a sequence \(x_n\in M\), such that \(\lim _{n\rightarrow \infty }g(x_n)=\sup _M g\), \( \lim _{n\rightarrow \infty }|\nabla g(x_n)|=0\) and \(\limsup _{n\rightarrow \infty }\Delta g(x_n)\le 0\). On the other hand, M is said to satisfy the Weak-Omori–Yau maximum principle if for any \(C^2\) bounded function \(g:M\rightarrow {\mathbb {R}}\) there is a sequence \(x_n\in M\), such that \(\lim _{n\rightarrow \infty }g(x_n)=\sup _M g\) and \(\limsup _{n\rightarrow \infty }\Delta g(x_n)\le 0\). It is easy to construct non-complete examples which are weak-Omori–Yau but not Omori–Yau. In this note, a complete example is constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borbély, A.: A remark on the Omori–Yau maximum principle. Kuwait J. Sci. 39, 45–56 (2012). (arXiv:1203.0178)

    MathSciNet  Google Scholar 

  2. Khas’minskii, R.Z.: Ergodic properties of recurrent diffusion processes and stabilization of the solution of the Cauchy problem for parabolic equations. Theory Probab. Appl. 5, 196–214 (1960)

    MathSciNet  MATH  Google Scholar 

  3. Kim, K., Lee, H.: On the Omori–Yau almost maximum principle. J. Math. Anal. Appl. 335, 332–340 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Mari, L., Pessoa, L. F.: Duality between Ahlfors–Liouville and Khasminskii properties for nonlinear equations, arXiv:1603.09113

  5. Omori, H.: Isometric immersions of Riemannian manifolds. J. Math. Soc. Jpn. 19, 205–214 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  6. Pigola, S., Rigoli, M., Setti, A.G.: A remark on the maximum principle and stochastic completeness. Proc. Am. Math. Soc. 131, 1283–1288 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ratti, A., Rigoli, M., Setti, A.G.: On the Omori–Yau maximum principle and its application to differential equations and geometry. J. Funct. Anal. 134, 486–510 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yau, S.-T.: Harmonic functions on complete Riemannian Manifolds. Commun. Pure Appl. Math. 28, 201–228 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Borbély.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borbély, A. Stochastic Completeness and the Omori–Yau Maximum Principle. J Geom Anal 27, 3228–3239 (2017). https://doi.org/10.1007/s12220-017-9802-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-017-9802-7

Keywords

Mathematics Subject Classification

Navigation