Skip to main content
Log in

Scalar Curvature Functions of Almost-Kähler Metrics

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

For a closed smooth manifold M admitting a symplectic structure, we define a smooth topological invariant Z(M) using almost-Kähler metrics, i.e., Riemannian metrics compatible with symplectic structures. We also introduce \(Z(M, [[\omega ]])\) depending on symplectic deformation equivalence class \([[\omega ]]\). We first prove that there exists a 6-dimensional smooth manifold M with more than one deformation equivalence class with different signs of \(Z(M, [[\omega ]] )\). Using Z invariants, we set up a Kazdan–Warner type problem of classifying symplectic manifolds into three categories. We finally prove that on every closed symplectic manifold \((M, \omega )\) of dimension \(\ge \!\!4\), any smooth function which is somewhere negative and somewhere zero can be the scalar curvature of an almost-Kähler metric compatible with a symplectic form which is deformation equivalent to \(\omega \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For example, one can apply Protter’s theorem [20] which states that if a real-valued function u defined in a domain \(D\subset \mathbb R^m\) containing 0 satisfies that \(|\Delta ^nu|\le f(x,u,Du,\ldots ,D^ku)\) for Lipschitzian f and \(k\le [\frac{3n}{2}]\), and \(e^{2r^{-\beta }}u\rightarrow 0\) as \(r:=\sqrt{x_1^2+\cdots +x_m^2}\rightarrow 0\) for any constant \(\beta >0\), then u vanishes identically in D.

References

  1. Abbena, E.: An example of an almost Kähler manifold which is not Kählerian. Boll. Un. Mat. Ital. A 6(3), 383–392 (1984)

    MathSciNet  MATH  Google Scholar 

  2. Apostolov, V., Drăghici, T.: The curvature and the integrability of almost Kähler manifolds: a survey. Fields Inst. Commun. Ser. AMS. 35, 25–53 (2003). http://arxiv.org/pdf/math/0302152v1

  3. Barth, W., Peters, C., Van de Ven, A.: Compact Complex Surfaces. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  4. Besse, A.L.: Einstein Manifolds. Ergebnisse der Mathematik, 3 Folge, vol. 10. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  5. Catanese, F., LeBrun, C.: On the scalar curvature of Einstein manifolds. Math. Res. Lett. 4, 843–854 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beig, R., Chruściel, P.T., Schoen, R.: KIDs are non-generic. Ann. Henri Poincaré 6(1), 155–194 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blair, D.: The ‘Total Scalar Curvature’ as a symplectic invariant, and related results. In: Proceedings of the 3rd Congress of Geometry (Thessaloniki, 1991), pp. 79–83. Aristotle University Thessaloniki (1992)

  8. Kazdan, J.L., Warner, F.W.: Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures. Ann. Math. 101(2), 317–331 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kazdan, J.L., Warner, F.W.: A direct approach to the determination of Gaussian and scalar curvature functions. Invent. Math. 28, 227–230 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kim, J.: Almost Kähler metrics of negative scalar curvature on symplectic manifolds. Math. Z. 262, 381–388 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kim, J.: A note on scalar curvature functions of almost-Kähler metrics. J. Korean Soc. Math. Educ. Ser. B 20, 199–206 (2013)

    MATH  Google Scholar 

  12. Kim, J., Sung, C.: Deformations of almost-Kähler metrics with constant scalar curvature on compact Kähler manifolds. Ann. Global Anal. Geom. 22, 49–73 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kobayashi, O.: Scalar curvature of a metric with unit volume. Math. Ann. 279, 253–265 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. LeBrun, C.: Yamabe constants and the perturbed Seiberg-Witten equations. Commun. Anal. Geom. 5, 535–553 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. LeBrun, C.: Kodaira dimension and the Yamabe problem. Commun. Anal. Geom. 7, 133–156 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lee, J.M., Parker, T.H.: The Yamabe problem. Bull. Am. Math. Soc. 17, 37–91 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lohkamp, J.: Metrics of negative Ricci curvature. Ann. Math. 140(2), 655–683 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. McDuff, D., Salamon, D.: Introduction to Symplectic Topology. Oxford University Press, New York (1998)

    MATH  Google Scholar 

  19. Ohta, H., Ono, K.: Notes on symplectic 4-manifolds with \(b_2^+ =1\), II. Int. J. Math. 07, 755–770 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Protter, M.H.: Unique continuation for elliptic equations. Trans. Am. Math. Soc. 95, 81–91 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rǎsdeaconu, R.: The Kodaira dimension of diffeomorphic Kähler threefolds. Proc. Am. Math. Soc. 134(12), 3543–3553 (2006)

    Article  MATH  Google Scholar 

  22. Ruan, Y.: Symplectic topology on algebraic 3-folds. J. Differ. Geom. 39, 215–227 (1994)

    MathSciNet  MATH  Google Scholar 

  23. Salamon, D.: Uniqueness of symplectic structures. Acta Math. Vietnam. 38, 123–144 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Simanca, S.R., Stelling, L.D.: The dynamics of the energy of a Kähler class. Commun. Math. Phys. 255, 363–389 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Taubes, C.H.: The Seiberg-Witten invariants and symplectic forms. Math. Res. Lett. 1, 809–822 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MOE), for the first author (NRF-2010-0011704)..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanyoung Sung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Sung, C. Scalar Curvature Functions of Almost-Kähler Metrics. J Geom Anal 26, 2711–2728 (2016). https://doi.org/10.1007/s12220-015-9645-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-015-9645-z

Keywords

Mathematics Subject Classification

Navigation