Skip to main content
Log in

Orlicz–Legendre Ellipsoids

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

The Orlicz–Legendre ellipsoids, which are in the framework of emerging dual Orlicz Brunn–Minkowski theory, are introduced for the first time. They are in some sense dual to the recently found Orlicz–John ellipsoids, and have largely generalized the classical Legendre ellipsoid of inertia. Several new affine isoperimetric inequalities are established. The connection between the characterization of Orlicz–Legendre ellipsoids and isotropy of measures is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ball, K.: Volume ratios and a reverse isoperimetric inequality. J. Lond. Math. Soc. 44, 351–359 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ball, K.: Ellipsoids of maximal volume in convex bodies. Geom. Dedic. 41, 241–250 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barthe, F.: On a reverse form of the Brascamp-Lieb inequality. Invent. Math. 134, 335–361 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barthe, F., Guedon, O., Mendelson, S., Naor, A.: A probabilistic approach to the geometry of the \(l^n_p\) ball. Ann. Probab. 33, 480–513 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bastero, J., Romance, M.: Positions of convex bodies associated to extremal problems and isotropic measures. Adv. Math. 184, 64–88 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blaschke, W.: Affine geometrie XIV. Ber. Verh. Säch. Akad. Wiss. Leipzig Math.-Phys. Kl. 70, 72–75 (1918)

    Google Scholar 

  7. Böröczky, K., Lutwak, E., Yang, D., Zhang, G.: The log-Brunn-Minkowski inequality. Adv. Math. 231, 1974–1997 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Böröczky, K., Lutwak, E., Yang, D., Zhang, G.: The logarithmic Minkowski problem. J. Am. Math. Soc. 26, 831–852 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bourgain, J., Zhang, G.: On a generalization of the Busemann–Petty problem. In: Ball, K., Milman, V. (eds.) Convex Geometric Analysis, vol. 34, pp. 65–76. Cambridge University Press, New York (1998)

    Google Scholar 

  10. Gardner, R.J.: Geometric Tomography. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  11. Gardner, R.J.: The dual Brunn-Minkowski theory for bounded Borel sets: dual affine quermassintegrals and inequalities. Adv. Math. 216, 358–386 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gardner, R.J., Hug, D., Weil, W.: Operations between sets in geometry. J. Eur. Math. Soc. 15, 2297–2352 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gardner, R.J., Hug, D., Weil, W.: The Orlicz-Brunn-Minkowski theory: a general framework, additions, and inequalities. J. Differ. Geom. 97, 427–476 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Giannopoulos, A.A., Papadimitrakis, M.: Isotropic surface area measures. Mathematika 46, 1–13 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Giannopoulos, A.A., Milman, V.D.: Extremal problems and isotropic positions of convex bodies. Isr. J. Math. 117, 29–60 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gromov, M., Milman, V.D.: Generalization of the spherical isoperimetric inequality for uniformly convex Banach Spaces. Compos. Math. 62, 263–282 (1987)

    MathSciNet  MATH  Google Scholar 

  17. Gruber, P.M.: Minimal ellipsoids and their duals. Rend. Circ. Mat. Palermo 37, 35–64 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gruber, P.M., Schuster, F.E.: An arithmetic proof of John’s ellipsoid theorem. Arch. Math. 85, 82–88 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gruber, P.M.: Convex and Discrete Geometry. Springer, Berlin (2007)

    MATH  Google Scholar 

  20. Gruber, P.M.: John and Loewner ellipsoids. Discret. Comput. Geom. 46, 776–788 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Haberl, C., Lutwak, E., Yang, D., Zhang, G.: The even Orlicz Minkowski problem. Adv. Math. 224, 2485–2510 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Henk, M., Linke, E.: Cone-volume measures of polytopes. Adv. Math. 253, 50–62 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. John, F.: Polar correspondence with respect to a convex region. Duke Math. J. 3, 355–369 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  24. John, F.: Extremum problems with inequalities as subsidiary conditions. In: Friedrichs, K.O., Neuegebauer, O., Stoker, J.J. (eds.) Studies and Essays Presented to R. Courant on His 60th Birthday, pp. 187–204. Interscience Publishers, New York (1948)

    Google Scholar 

  25. Klartag, B.: On John-type ellipsoids. In: Milman, V.D., Schechtman, G. (eds.) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 1850, pp. 149–158. Springer, Berlin (2004)

    Chapter  Google Scholar 

  26. Lewis, D.: Ellipsoids defined by Banach ideal norms. Mathematika 26, 18–29 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lindenstrauss, J., Milman, V.: The local theory of normed spaces and its applications to convexity. In: Gruber, P.M., Wills, J.M. (eds.) Handbook of Convex Geometry. North-Holland, Amsterdam (1993)

    Google Scholar 

  28. Ludwig, M.: Ellipsoids and matrix-valued valuations. Duke Math. J. 119, 159–188 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ludwig, M.: General affine surface areas. Adv. Math. 224, 2346–2360 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ludwig, M., Reitzner, M.: A classification of \({{\rm SL}}(n)\) invariant valuations. Ann. Math. 172, 1219–1267 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lutwak, E.: Dual mixed volumes. Pac. J. Math. 58, 531–538 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lutwak, E.: Intersection bodies and dual mixed volumes. Adv. Math. 71, 232–261 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lutwak, E.: Centroid bodies and dual mixed volumes. Proc. Lond. Math. Soc. 3, 365–391 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lutwak, E.: The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem. J. Differ. Geom. 38, 131–150 (1993)

    MathSciNet  MATH  Google Scholar 

  35. Lutwak, E.: The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas. Adv. Math. 118, 244–294 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lutwak, E., Yang, D., Zhang, G.: A new ellipsoid associated with convex bodies. Duke Math. J. 104, 375–390 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lutwak, E., Yang, D., Zhang, G.: \(L_p\) affine isoperimetric inequalities. J. Differ. Geom. 56, 111–132 (2000)

    MathSciNet  MATH  Google Scholar 

  38. Lutwak, E., Yang, D., Zhang, G.: A new affine invariant for polytopes and Schneider’s projection problem. Trans. Am. Math. Soc. 353, 1767–1779 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lutwak, E., Yang, D., Zhang, G.: The Cramer-Rao inequality for star bodies. Duke Math. J. 112, 59–81 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lutwak, E., Yang, D., Zhang, G.: Volume inequalities for subspaces of \(L_p\). J. Differ. Geom. 68, 159–184 (2004)

    MathSciNet  MATH  Google Scholar 

  41. Lutwak, E., Yang, D., Zhang, G.: \(L_p\) John ellipsoids. Proc. Lond. Math. Soc. 90, 497–520 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lutwak, E., Yang, D., Zhang, G.: A volume inequality for polar bodies. J. Differ. Geom. 84, 163–178 (2010)

    MathSciNet  MATH  Google Scholar 

  43. Lutwak, E., Yang, D., Zhang, G.: Orlicz projection bodies. Adv. Math. 223, 220–242 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lutwak, E., Yang, D., Zhang, G.: Orlicz centroid bodies. J. Differ. Geom. 84, 365–387 (2010)

    MathSciNet  MATH  Google Scholar 

  45. Matveev, V.S., Troyanov, M.: The Binet-Legendre metric in Finsler geometry. Geom. Topol. 16, 2135–2170 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Milman, V.D., Pajor, A.: Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space. In: Lindenstrauss, J., Milman, V.D. (eds.) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 1376, pp. 64–104. Springer, New York (1989)

    Chapter  Google Scholar 

  47. Petty, C.M.: Surface area of a convex body under affine transformations. Proc. Am. Math. Soc. 12, 824–828 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  48. Petty, C.M.: Centroid surfaces. Pac. J. Math. 11, 1535–1547 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  49. Pisier, G.: The Volume of Convex Bodies and Banach Space Geometry. Cambridge University Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  50. Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces. Marcel Dekker, New York (1991)

    MATH  Google Scholar 

  51. Schneider, R.: Convex Bodies: the Brunn-Minkowski Theory. Cambridge University Press, Cambridge (2014)

    MATH  Google Scholar 

  52. Xiong, G.: Extremum problems for the cone volume functional of convex polytopes. Adv. Math. 225, 3214–3228 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Xiong, G., Zou, D.: Orlicz mixed quermassintegrals. Sci. China Math. 57, 2549–2562 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  54. Yu, W., Leng, G., Wu, D.: Dual \(L_p\) John ellipsoids. Proc. Edinb. Math. Soc. 50, 737–753 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhang, G.: Sections of convex bodies. Am. J. Math. 118, 319–340 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhang, G.: A positive answer to the Busemann-Petty problem in four dimensions. Ann. Math. 149, 535–543 (1999)

    Article  Google Scholar 

  57. Zhu, B., Zhou, J., Xu, W.: Dual Orlicz-Brunn-Minkowski theory. Adv. Math. 264, 700–725 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  58. Zhu, G.: The Orlicz centroid inequality for star bodies. Adv. Appl. Math. 48, 432–445 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  59. Zou, D., Xiong, G.: Orlicz-John ellipsoids. Adv. Math. 265, 132–168 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  60. Zou, D., Xiong, G.: The minimal Orlicz surface area. Adv. Appl. Math. 61, 25–45 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are grateful to the referee(s) for many suggested improvements and for the thoughtful and careful reading given to the original draft of this paper. Research of the authors was supported by NSFC No. 11471206.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, D., Xiong, G. Orlicz–Legendre Ellipsoids. J Geom Anal 26, 2474–2502 (2016). https://doi.org/10.1007/s12220-015-9636-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-015-9636-0

Keywords

Mathematics Subject Classification

Navigation