Skip to main content
Log in

Support Points and Extreme Points for Mappings with \(A\)-Parametric Representation in \(\mathbb {C}^{n}\)

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Let \(A\in L({\mathbb {C}}^n)\) be a linear operator such that \(k_+(A)<2m(A)\), where \(k_+(A)\) is the upper exponential index of \(A\) and \(m(A)=\min \{\mathfrak {R}\langle A(z),z\rangle :\Vert z\Vert =1\}\). In this paper we are concerned with variations of \(A\)-normalized univalent subordination chains on the Euclidean unit ball \(\mathbb {B}^n\) in \(\mathbb {C}^n\). We also obtain growth results for the generating vector fields and the transition mappings associated with \(A\)-normalized univalent subordination chains \(f(z,t)\) that satisfy some regularity assumptions. Further, we give examples of normalized biholomorphic mappings on \(\mathbb {B}^n\) which are not extreme/support points for the compact family \(S_A^0(\mathbb {B}^n)\) of mappings with \(A\)-parametric representation on \(\mathbb {B}^n\). Next, we consider the (normalized) time-\(\log M\)-reachable family \(\tilde{\fancyscript{R}}_{\log M}(\mathrm{id}_{\mathbb {B}^n},{\fancyscript{N}}_A)\) generated by the Carathéodory mappings, where \(M\in (1,\infty )\) and \(k_+(A)<2m(A)\). We prove a result related to the support points \(f\) of the family \(\tilde{\fancyscript{R}}_{\log M}(\mathrm{id}_{\mathbb {B}^n},{\fancyscript{N}}_A)\) and the associated \(A\)-univalent subordination chains \(f(z,t)\) such that \(f=f(\cdot ,0)\). In particular, if \(f\in \tilde{\fancyscript{R}}_{\log M}(\mathrm{id}_{\mathbb {B}^n},{\fancyscript{N}}_A)\), then \(f\not \in (\mathrm{supp}\, S_A^0(\mathbb {B}^n)\cup \mathrm{ex}\, S_A^0(\mathbb {B}^n))\). In the last part of the paper, using some ideas based on a shearing process that has been introduced recently by F. Bracci, we obtain a sharp estimate for \(\Big |\frac{\partial ^2 f_1}{\partial z_2^2}(0)\Big |\), when \(f=(f_1,f_2)\in S_A^0(\mathbb {B}^2)\) and \(A\) is a diagonal matrix whose diagonal elements are \(\lambda \) and \(1, \lambda \in [1,2)\). This result allows us to construct an example of a bounded support mapping for the family \(S_A^0(\mathbb {B}^2)\), but which does not belong to any reachable family \(\tilde{\fancyscript{R}}_{\log M}(\mathrm{id}_{\mathbb {B}^2},{\fancyscript{N}}_A)\), for all \(M>1\). This example provides a basic difference between the theory of bounded univalent mappings on the unit disc \(U\) and that on the unit ball \(\mathbb {B}^n\) in \(\mathbb {C}^n, n\ge 2\). Finally, we construct an example of a support point \(F_A^M\) for the reachable family \(\tilde{\fancyscript{R}}_{\log M}(\mathrm{id}_{\mathbb {B}^2},{\fancyscript{N}}_A)\), but which is not a support point/extreme point for the family \(S_A^0(\mathbb {B}^2)\), and we conjecture that the mapping \(F_A^M\) is also an extreme point for the family \(\tilde{\fancyscript{R}}_{\log M}(\mathrm{id}_{\mathbb {B}^2},{\fancyscript{N}}_A)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arosio, L.: Resonances in Loewner equations. Adv. Math. 227, 1413–1435 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arosio, L., Bracci, B., Hamada, H., Kohr, G.: An abstract approach to Loewner chains. J. Anal. Math. 119, 89–114 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arosio, L., Bracci, F., Wold, F.E.: Solving the Loewner PDE in complete hyperbolic starlike domains of \({\mathbb{C}}^n\). Adv. Math. 242, 209–216 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bracci, F.: Shearing process and an example of a bounded support function in \(S^0({\mathbb{B}}^2)\). Comput. Methods Funct. Theory 15, 151–157 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bracci, F., Contreras, M.D., Díaz-Madrigal, S.: Evolution families and the Loewner equation II: complex hyperbolic manifolds. Math. Ann. 344, 947–962 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bracci, F., Elin, M., Shoikhet, D.: Growth estimates for pseudo-dissipative holomorphic maps in Banach spaces. J. Nonlinear Convex Anal. 15, 191–198 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Bracci, F., Graham, I., Hamada, H., Kohr, G.: Variation of Loewner chains, extreme and support points in the class \(S^0\) in higher dimensions. Submitted (2014); arXiv:1402.5538v2

  8. Daleckii, Yu L., Krein, M.G.: Stability of Solutions of Differential Equations in Banach Space. Translations of Mathematical Monographs, vol. 48. American Mathematical Society, Providence (1974)

    Google Scholar 

  9. Duren, P.: Univalent Functions. Springer, New York (1983)

    MATH  Google Scholar 

  10. Duren, P., Graham, I., Hamada, H., Kohr, G.: Solutions for the generalized Loewner differential equation in several complex variables. Math. Ann. 347, 411–435 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Elin, M., Reich, S., Shoikhet, D.: Complex dynamical systems and the geometry of domains in Banach spaces. Diss. Math. 427, 1–62 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Goodman, G.S.: Univalent Functions and Optimal Control. Ph.D. Thesis, Stanford University (1968)

  13. Graham, I., Hamada, H., Honda, T., Kohr, G., Shon, K.H.: Growth, distortion and coefficient bounds for Carathéodory families in \({\mathbb{C}}^n\) and complex Banach spaces. J. Math. Anal. Appl. 416, 449–469 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Graham, I., Hamada, H., Kohr, G.: Parametric representation of univalent mappings in several complex variables. Can. J. Math. 54, 324–351 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Graham, I., Hamada, H., Kohr, G.: Extremal problems and \(g\)-Loewner chains in \({\mathbb{C}}^n\) and reflexive complex Banach spaces. In: Rassias, T.M., Toth, L. (eds.) Topics in Mathematical Analysis and Applications, pp. 387–418. Springer, Berlin (2014)

    Google Scholar 

  16. Graham, I., Hamada, H., Kohr, G., Kohr, M.: Asymptotically spirallike mappings in several complex variables. J. Anal. Math. 105, 267–302 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Graham, I., Hamada, H., Kohr, G., Kohr, M.: Extreme points, support points and the Loewner variation in several complex variables. Sci. China Math. 55, 1353–1366 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Graham, I., Hamada, H., Kohr, G., Kohr, M.: Extremal properties associated with univalent subordination chains in \({\mathbb{C}}^n\). Math. Ann. 359, 61–99 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Graham, I., Kohr, G.: Geometric Function Theory in One and Higher Dimensions. Marcel Dekker Inc., New York (2003)

    MATH  Google Scholar 

  20. Gurganus, K.: \(\Phi \)-like holomorphic functions in \({\mathbb{C}}^n\) and Banach spaces. Trans. Am. Math. Soc. 205, 389–406 (1975)

    MathSciNet  MATH  Google Scholar 

  21. Hallenbeck, D.J., MacGregor, T.H.: Linear problems and convexity techniques in geometric function theory. Pitman, Boston (1984)

    MATH  Google Scholar 

  22. Hamada, H.: Polynomially bounded solutions to the Loewner differential equation in several complex variables. J. Math. Anal. Appl. 381, 179–186 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hamada, H.: Approximation properties on spirallike domains of \({\mathbb{C}}^n\). Adv. Math. 268, 467–477 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hamada, H., Kohr, G.: Loewner chains and quasiconformal extension of holomorphic mappings. Ann. Pol. Math. 81, 85–100 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Harris, L.: The numerical range of holomorphic functions in Banach spaces. Am. J. Math. 93, 1005–1019 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jurdjevic, V.: Geometric Control Theory. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  27. Kirwan, W.E.: Extremal properties of slit conformal mappings. In: Brannan, D., Clunie, J. (eds.) Aspects of Contemporary Complex Analysis, pp. 439–449. Academic Press, London (1980)

    Google Scholar 

  28. Muir, J.R., Suffridge, T.J.: Extreme points for convex mappings of \({\mathbb{B}}_n\). J. Anal. Math. 98, 169–182 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pell, R.: Support point functions and the Loewner variation. Pac. J. Math. 86, 561–564 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pfaltzgraff, J.A.: Subordination chains and univalence of holomorphic mappings in \({\mathbb{C}}^n\). Math. Ann. 210, 55–68 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pfaltzgraff, J.A., Suffridge, T.J.: Koebe invariant functions and extremal problems for holomorphic mappings in the unit ball of \({\mathbb{C}}^n\). Comput. Methods Funct. Theory. 7(2), 379–399 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pommerenke, C.: Über die subordination analytischer funktionen. J. Reine Angew. Math. 218, 159–173 (1965)

    MathSciNet  MATH  Google Scholar 

  33. Pommerenke, C.: Univalent Functions. Vandenhoeck & Ruprecht, Göttingen (1975)

    MATH  Google Scholar 

  34. Poreda, T.: On the univalent holomorphic maps of the unit polydisc in \({\mathbb{C}}^n\) which have the parametric representation, I-the geometrical properties. Ann. Univ. Mariae Curie Skl. Sect. A. 41, 105–113 (1987)

    MathSciNet  MATH  Google Scholar 

  35. Poreda, T.: On the univalent holomorphic maps of the unit polydisc in \({\mathbb{C}}^n\) which have the parametric representation, II-the necessary conditions and the sufficient conditions. Ann. Univ. Mariae Curie Skl. Sect. A. 41, 115–121 (1987)

    MathSciNet  MATH  Google Scholar 

  36. Prokhorov, D.V.: Bounded univalent functions. In: Kühnau, R. (ed.) Handbook of Complex Analysis: Geometric Function Theory, vol. I, pp. 207–228. Elsevier Science, New York (2002)

    Chapter  Google Scholar 

  37. Range, M.: Holomorphic Functions and Integral Representations in Several Complex Variables. Springer, New York (1986)

    Book  MATH  Google Scholar 

  38. Reich, S., Shoikhet, D.: Nonlinear Semigroups, Fixed Points, and Geometry of Domains in Banach Spaces. Imperial College Press, London (2005)

    Book  MATH  Google Scholar 

  39. Rogosinski, W.: On the coefficients of subordinate functions. Proc. Lond. Math. Soc. 48, 48–82 (1943)

    MathSciNet  MATH  Google Scholar 

  40. Roth, O.: Control Theory in \({\fancyscript {H}}(\mathbb{D})\). Dissertation of Bayerischen University, Wuerzburg (1998)

  41. Roth, O.: Pontryagin’s maximum principle for the Loewner equation in higher dimensions. Can. J. Math. To appear. doi:10.4153/CJM-2014-027-6

  42. Schleissinger, S.: On support points of the class \(S^0({\mathbb{B}}^n)\). Proc. Am. Math. Soc. 142, 3881–3887 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Suffridge, T.J.: Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions. In: Lecture Notes Math. 599, pp. 146–159, Springer (1977)

  44. Voda, M.: Solution of a Loewner chain equation in several complex variables. J. Math. Anal. Appl. 375, 58–74 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Some of the research to this paper was carried out in August, 2014, when Gabriela Kohr and Mirela Kohr visited the Department of Mathematics of the University of Toronto. They express their gratitude to the members of this department for their hospitality during that visit. I. Graham was partially supported by the Natural Sciences and Engineering Research Council of Canada under Grant A9221. H. Hamada was partially supported by JSPS KAKENHI Grant Number 25400151. G. Kohr was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, Project Number PN-II-ID-PCE-2011-3-0899. M. Kohr was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, Project Number PN-II-ID-PCE-2011-3-0994.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Graham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graham, I., Hamada, H., Kohr, G. et al. Support Points and Extreme Points for Mappings with \(A\)-Parametric Representation in \(\mathbb {C}^{n}\) . J Geom Anal 26, 1560–1595 (2016). https://doi.org/10.1007/s12220-015-9600-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-015-9600-z

Keywords

Mathematics Subject Classification

Navigation