Skip to main content
Log in

Convergence of Harmonic Maps

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper we prove a compactness theorem for sequences of harmonic maps which are defined on converging sequences of Riemannian manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The conjugate domain at a point \(p\) in a Riemannian manifold \(M\) is the largest star shaped domain in which \(d\exp _p\) is non-singular and the conjugate radius is the radius of the largest ball in the conjugate domain at \(p\).

References

  1. Besse, A.L.: Einstein Manifolds. Classics in Mathematics. Springer, Berlin (2008). Reprint of the 1987 edition

    Google Scholar 

  2. Bemelmans, J., Min-Oo, Ruh, E.A.: Smoothing Riemannian metrics. Math. Z. 188(1), 69–74 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below. I. J. Differ. Geom. 46(3), 406–480 (1997)

    MATH  MathSciNet  Google Scholar 

  4. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below. II. J. Differ. Geom. 54(1), 13–35 (2000)

    MATH  MathSciNet  Google Scholar 

  5. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below. III. J. Differ. Geom. 54(1), 37–74 (2000)

    MATH  MathSciNet  Google Scholar 

  6. Cheeger, J., Fukaya, K., Gromov, M.: Nilpotent structures and invariant metrics on collapsed manifolds. J. Am. Math. Soc. 5(2), 327–372 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cheeger, J.: Finiteness theorems for Riemannian manifolds. Am. J. Math. 92, 61–74 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  8. Eells, J., Fuglede, B.: Harmonic maps between Riemannian polyhedra. Cambridge Tracts in Mathematics, vol. 142. Cambridge University Press, Cambridge. With a preface by M. Gromov (2001)

  9. Eells Jr, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86, 109–160 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fang, F., Li, X.-D., Zhang, Z.: Two generalizations of Cheeger–Gromoll splitting theorem via Bakry–Emery Ricci curvature. Ann. Inst. Fourier (Grenoble) 59(2), 563–573 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fukaya, K.: Collapsing of Riemannian manifolds and eigenvalues of Laplace operator. Invent. Math. 87(3), 517–547 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fukaya, K.: A boundary of the set of the Riemannian manifolds with bounded curvatures and diameters. J. Differ. Geom. 28(1), 1–21 (1988)

    MATH  MathSciNet  Google Scholar 

  13. Fukaya, K.: Collapsing Riemannian manifolds to ones with lower dimension. II. J. Math. Soc. Jpn. 41(2), 333–356 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Grove, K., Petersen, P.: Manifolds near the boundary of existence. J. Differ. Geom. 33(2), 379–394 (1991)

    MATH  MathSciNet  Google Scholar 

  15. Gromov, M: Structures métriques pour les variétés riemanniennes. In: Lafontaine, J., Pansu, P. (eds.) Textes Mathématiques [Mathematical Texts], vol. 1. CEDIC, Paris, (1981)

  16. Gromov, M., Schoen, R.: Harmonic maps into singular spaces and \(p\)-adic superrigidity for lattices in groups of rank one. Inst. Hautes Études Sci. Publ. Math. 76, 165–246 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, 2nd edn. Springer, Berlin (1983)

  18. Greene, R.E., Wu, H.: Lipschitz convergence of Riemannian manifolds. Pacific J. Math. 131(1), 119–141 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jost, J.: Convex functionals and generalized harmonic maps into spaces of nonpositive curvature. Comment. Math. Helv. 70(1), 659–673 (1995)

  20. Korevaar, N.J., Schoen, R.M.: Sobolev spaces and harmonic maps for metric space targets. Comm. Anal. Geom. 1(3–4), 561–659 (1993)

    MATH  MathSciNet  Google Scholar 

  21. Lichnerowicz, A.: Applications harmoniques et variétés Kähleriennes. Rend. Sem. Mat. Fis. Milano 39, 186–195 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lin, F.-H.: Gradient estimates and blow-up analysis for stationary harmonic maps. Ann. Math. (2) 149(3), 785–829 (1999)

    Article  MATH  Google Scholar 

  23. Lott, J.: Some geometric properties of the Bakry-Émery-Ricci tensor. Comment. Math. Helv. 78(4), 865–883 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Morgan, F.: Manifolds with density. Notices Am. Math. Soc. 52(8), 853–858 (2005)

    MATH  Google Scholar 

  25. Moser, R.: Partial regularity for harmonic maps and related problems. World Scientific Publishing Co., Pte. Ltd., Hackensack (2005)

    Book  MATH  Google Scholar 

  26. Munteanu, O., Wang, J.: Smooth metric measure spaces with non-negative curvature. Comm. Anal. Geom. 19(3), 451–486 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Peters, S.: Cheeger’s finiteness theorem for diffeomorphism classes of Riemannian manifolds. J. Reine Angew. Math. 349, 77–82 (1984)

    MATH  MathSciNet  Google Scholar 

  28. Qian, Z.: Estimates for weighted volumes and applications. Quart. J. Math. Oxford Ser. (2) 48(190), 235–242 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  29. Rong, X.: Convergence and collapsing theorems in Riemannian geometry. In: Handbook of Geometric Analysis, No. 2. Advanced Lectures in Mathematics (ALM), vol. 13, pp. 193–299. Int. Press, Somerville, MA (2010)

  30. Schoen, R.M.: Analytic aspects of the harmonic map problem. In: Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983). Mathematical Sciences Research Institute Publications, vol. 2, pp. 321–358. Springer, New York, (1984)

  31. Su, Y-H., Zhang, H-C.: Rigidity of manifolds with Bakry-Émery Ricci curvature bounded below. Geometriae Dedicata, 1–11 (2011)

  32. Taylor, M.E.: Tools for PDE:Pseudodifferential operators, paradifferential operators, and layer potentials. Mathematical Surveys and Monographs, vol. 81. American Mathematical Society, Providence, RI (2000)

  33. Wu, J.-Y.: Upper bounds on the first eigenvalue for a diffusion operator via Bakry-Émery Ricci curvature. J. Math. Anal. Appl. 361(1), 10–18 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  34. Wei, G., Wylie, W.: Comparison geometry for the Bakry–Emery Ricci tensor. J. Differ. Geom. 83(2), 377–405 (2009)

    MATH  MathSciNet  Google Scholar 

  35. Xin, Y.: Geometry of Harmonic Maps. Progress in Nonlinear Differential Equations and their Applications, 23. Birkhäuser Boston Inc., Boston, MA (1996)

    Google Scholar 

Download references

Acknowledgments

This work is part of my Ph.D. dissertation. I thank my advisor Professor Marc Troyanov for his guidance and support in the completion of this work. I also thank Professors Buser, Naber, and Wenger for their reading of this document and their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Sinaei.

Appendix: Convergence of Tension Field

Appendix: Convergence of Tension Field

In this section we study convergence of the tension fields of the maps \(f_i, \tau (f_i)\), under the assumptions of Proposition 3.6.

Assume \((M_i,g_i), f_i, N\) to be as in Proposition 3.6. Moreover consider the following assumption

Assumption 2

The section \(s_{i,j}\) is almost harmonic,

$$\begin{aligned} |\tau (s_{i,j})|\le C\cdot \epsilon ''_i, \end{aligned}$$
(21)

and also

$$\begin{aligned} |\nabla _{\bar{X}}ds_{i,j}(X)|\le C\cdot \epsilon ''_i, \end{aligned}$$
(22)

where \(X\) is a smooth vector field on \(M\) and \(\bar{X}\) is its horizontal lift and \(\epsilon ''_i\) is a sequence which converges to zero.

Using Assumption 1 and by Theorem 2.4 we have

$$\begin{aligned} \tau (f_i)&= ({\nabla _{e_k}}df_i)e_k+({\nabla _{e_t}}df_i)e_t\\&= ({\nabla _{e_k}}df_i)e_k+\nabla _{{f_i}_*(e_t)}{{f_i}_*(e_t)}{\nonumber }\\&-{f_i}_*(\nabla _{e_t}{e_t})^{H}- {f_i}_*(\nabla _{e_t}{e_t})^V{\nonumber }\\&= ({\nabla _{e_k}}df_i)e_k-{f_i}_*({{\mathrm{H}}}_i)+\tau ({f_i}^{\bot }){\nonumber } \end{aligned}$$
(23)

where \(\{e_k,e_t\}\) and \(\bar{e}_k\) are as in the proof of Proposition 3.6, \({f_i}^{\bot }\) denotes the restriction of \(f_i\) to the fibers \(F_i\), and \({{\mathrm{H}}}_i\) is the mean curvature vector of the submanifold \(F_i\).

We investigate how each term of the equation above behaves as \(f_i\) converges to \(f\).

Lemma 3.11

We have

$$\begin{aligned} \lim _{i\rightarrow \infty }\left| d I({\nabla _{e_k}}d f_i)e_k(p)- \left( \Delta _{g_i^M} \tilde{f_i}-\Pi (\tilde{f_i})(d\tilde{f_i},d\tilde{f_i})\right) (\psi _i(p))\right| =0. \end{aligned}$$
(24)

Proof

By the discussion in the proof of Proposition 3.6, we know that \(\tilde{f_i}\) converges to \(f\) in the \(C^1\)-topology. Using the composition formula we have

$$\begin{aligned} dI(Bf_i(X_1,X_2))=B(I\circ f_i)(X_1,X_2)-B(\pi _N)(d (I\circ f_i)(X_1),d (I\circ f_i)(X_2)), \end{aligned}$$

and so for \(k=1,\ldots ,n\),

$$\begin{aligned} dI(({\nabla _{e_k}}df_i)e_k)=({\nabla _{e_k}}d( I\circ f_i))e_k-B(\pi _N)(d(I\circ f_i)(e_k),d(I\circ f_i)(e_k)). \end{aligned}$$

First we show that

$$\begin{aligned} \lim _{i\rightarrow \infty }|{\nabla _{e_k}}d(I\circ f_i)e_k(p)- \Delta _{g_i^M} \tilde{f_i}(\psi _i(p))|=0. \end{aligned}$$

By definition of \(\tilde{f_i}\),

$$\begin{aligned} (\nabla _{{\bar{e}_k}} d\tilde{f_i}){\bar{e}_k}&= \sum \big (d\beta _j{({\bar{e}_k})}\cdot d f_i({s_{i,j}}_*({\bar{e}_k}))\\&\qquad +\beta _j\cdot (\nabla _{{\bar{e}_k}}d(f_i\circ s_{i,j})){\bar{e}_k}+\triangle \beta _j\cdot f_i\circ s_{i,j}\big ). \end{aligned}$$

and again by the composition formula

$$\begin{aligned} \tau (f_i\circ s_{i,j})=B_{{s_{i,j}}_*(\bar{e}_k),{s_{i,j}}_*(\bar{e}_k)} {f_i}+df_i(\tau (s_{i,j})). \end{aligned}$$
(25)

Since \(f_i\circ s_{i,j}\) converges in \(C^1\) to \(f\)

$$\begin{aligned}&\lim \limits _{i\rightarrow \infty }|\sum d\beta _j{({\bar{e}_k})}\cdot d f_i({s_{i,j}}_*({\bar{e}_k}))|=0,\\&\lim \limits _{i\rightarrow \infty }\sum \Delta \beta _j\cdot f_i\circ s_{i,j}(x)= \sum \triangle \beta _j\cdot f(x)=0. \end{aligned}$$

Also, \({\psi _i}_*(e_k-{s_{i,j}}_*(\bar{e}_k))=0\) and so \(e_k-{s_{i,j}}_*(\bar{e}_k)\) is vertical. On the other hand

$$\begin{aligned} |e_k-{s_{i,j}}_*(\bar{e}_k)|\le \epsilon _i. \end{aligned}$$

By inequality (11) and almost harmonicity of \(s_{i,j}\) (21), the second term on the right hand side of (25) converges to zero. Again by inequality (12) and (22), we have

$$\begin{aligned}&\lim _{i\rightarrow \infty }|(\nabla _{e_k}{d f_i})(e_k-{s_{i,j}}_*(\bar{e}_k))|=0,\\&\lim _{i\rightarrow \infty }|(\nabla _ {(e_k-{s_{i,j}}_*(\bar{e}_k))}d{f_i})e_k|=0. \end{aligned}$$

Finally

$$\begin{aligned} \lim _{i\rightarrow \infty }|(\nabla _{e_k} d(I\circ f_i))e_k(p)-(\nabla _{\bar{e}_k}d\tilde{f_i})\bar{e}_k(\psi _(p))|=0. \end{aligned}$$

We have the same for the second term

$$\begin{aligned} \lim _{i\rightarrow \infty }|\Pi (f_i)(p)(df_i,df_i)-\Pi (\tilde{f_i})(\psi _i(p))(d\tilde{f_i},d\tilde{f_i})|=0. \end{aligned}$$

\(\square \)

By the above lemma and \({\psi _i}_*(\tfrac{{{\mathrm{dvol}}}_{M_i}}{{{\mathrm{vol}}}(M_i)})=\Phi _i{{\mathrm{dvol}}}_{M}\), we have

$$\begin{aligned}&\lim \limits _{i\rightarrow \infty }\left| \int _{M_i}\langle dI(({\nabla _{e_k}}d f_i)e_k),\eta _i\rangle ~\tfrac{{{\mathrm{dvol}}}_{M_i}}{{{\mathrm{vol}}}(M_i)}\right. \\&\quad \left. - \int _M \langle \Delta ^{g_i^M} \tilde{f_i}-\Pi (\tilde{f_i})(d \tilde{f_i},d\tilde{f_i}),\eta \rangle ~\Phi _i{{\mathrm{dvol}}}_{g_i^M}\right| =0, \end{aligned}$$

and we conclude

$$\begin{aligned}&\lim \limits _{i\rightarrow \infty }\int _{M_i}\langle dI(({\nabla _{e_k}}d f_i)e_k),\eta _i\rangle ~\tfrac{{{\mathrm{dvol}}}_{M_i}}{{{\mathrm{vol}}}(M_i)}\nonumber \\&=\int _{M}\left[ \langle df,d\eta \rangle +\langle df(\nabla \ln \Phi )-\Pi (f)(df,df),\eta \rangle \right] ~ \Phi {{\mathrm{dvol}}}_M. \end{aligned}$$
(26)

Here \(\eta \) is a test map on \(M\) and \(\eta _i=\eta \circ \psi _i\). Now we will consider the second and third terms in the decomposition of \(\tau (f_i)\).

Lemma 3.12

With the same assumptions as above

  1. i.

    \(\lim \limits _{i\rightarrow \infty } \int _{M_i}\langle df_i({{\mathrm{H}}}_i),\eta _i\rangle ~ \tfrac{{{\mathrm{dvol}}}_{M_i}}{{{\mathrm{vol}}}(M_i)}=-\int _{M}\langle df(\nabla \ln \Phi ),\eta \rangle ~ \Phi {{\mathrm{dvol}}}_M\).

  2. ii.

    \(\lim \limits _{i\rightarrow \infty }\Vert \tau ({f_i}^{\bot })\Vert =0\).

Here \({{\mathrm{H}}}_i\) denotes the mean curvature vector of the fibers \(F_i^x=\psi ^{-1}_i(x)\).

Before we prove Lemma 3.12, we prove the following lemma which we need for the proof of part i.

Lemma 3.13

We have

$$\begin{aligned} \int _M\eta d\ln \Phi (X)~\Phi {{\mathrm{dvol}}}_M=-\lim _{i\rightarrow \infty }\int _{M_i} \eta \langle X,{{\mathrm{H}}}_i\rangle ~ \tfrac{{{\mathrm{dvol}}}_{M_i}}{{{\mathrm{vol}}}(M_i)}. \end{aligned}$$
(27)

Proof

Suppose \(X\) is a smooth vector field on \(M\) and \(X_i\) its horizontal lift on \(M_i\). The flow \(\theta _t^i \) of \(X_i\) sends fibers to fibers diffeomorphically. By the first variation formula

$$\begin{aligned} \left. \frac{d}{dt} \right| _{t = 0} {\theta _t^i}^*({{\mathrm{dvol}}}_{F^x_i})=-\int _{F^x_i}\langle X_i,{{\mathrm{H}}}^x_i \rangle ~ {{\mathrm{dvol}}}_{F^x_i}. \end{aligned}$$
(28)

Also

$$\begin{aligned} \Phi _i(x)=\tfrac{{{\mathrm{vol}}}(\psi _i^{-1}(x))}{{{\mathrm{vol}}}(M_i)}. \end{aligned}$$

and by (28),

$$\begin{aligned} d\Phi _i(X)(x)=-\int _{F^x_i}\langle X_i,{{\mathrm{H}}}^x_i \rangle ~ \tfrac{{{\mathrm{dvol}}}_{F^x_i}}{{{\mathrm{vol}}}(M_i)}, \end{aligned}$$

For an arbitrary \(\eta \) in \(C^{\infty }({M})\), we prove

$$\begin{aligned} \int _{M} \eta d\Phi _i(X)~ {{\mathrm{dvol}}}_{g_i^M}=-\int _{M_i}\eta _i\langle X_i,{{\mathrm{H}}}_i \rangle ~ \tfrac{{{\mathrm{dvol}}}_{M_i}}{{{\mathrm{vol}}}(M_i)}. \end{aligned}$$
(29)

If we consider \((U_{\gamma },h_{\gamma })\) as a local trivialization of the fibration \(\psi _i\), then

$$\begin{aligned} \int _{M} \chi _{U_{\gamma }} d\Phi _i(X)~ {{\mathrm{dvol}}}^{g_i^M}=-\int _{U_{\gamma }}\int _{F^x_i}\chi _{U_{\gamma }}\langle X_i,{{\mathrm{H}}}^x_i\rangle ~ \tfrac{{{\mathrm{dvol}}}_{F^x_i}}{{{\mathrm{vol}}}(M_i)}{{\mathrm{dvol}}}_{g_i^M}, \end{aligned}$$

and so

$$\begin{aligned} \int _{M} \chi _{U_{\gamma }} d\Phi _i(X)~ {{\mathrm{dvol}}}^{g_i^M}_{M}=-\int _{\psi _i^{-1}( U_{\gamma })}\langle X_i,{{\mathrm{H}}}_i \rangle ~ \tfrac{{{\mathrm{dvol}}}_{M_i}}{{{\mathrm{vol}}}(M_i)}, \end{aligned}$$

where \(\chi _{U_{\gamma }}\) denotes the characteristic function on \(U_{\gamma }\) and so we have (29). The functions \(\Phi _i\) goes to \(\Phi \) in \(C^{\infty }\) and also \({{\mathrm{dvol}}}^{g_i^M}\) goes to \({{\mathrm{dvol}}}_M\) as \(i\) goes to infinity. Letting \(i\) go to \(\infty \) on the both sides of (29) and by the definition of weak derivatives

$$\begin{aligned} \int _M\eta d\ln \Phi (X)~\Phi {{\mathrm{dvol}}}_M=-\lim _{i\rightarrow \infty }\int _{M_i} \eta \langle X,{{\mathrm{H}}}_i\rangle ~ \tfrac{{{\mathrm{dvol}}}_{M_i}}{{{\mathrm{vol}}}(M_i)}. \end{aligned}$$

\(\square \)

Proof of Lemma 3.12

Part i follows directly from Lemma 3.13.

To prove part ii consider

$$\begin{aligned} \tau ({f_i}^{\bot })=\nabla _{{f_i}_*(e_t)}{{f_i}_*(e_t)}-{f_i}_*( \nabla _{e_t}{e_t})^{V}. \end{aligned}$$

From (11) and (12)

$$\begin{aligned} |\nabla _{{f_i}_*(e_t)}{{f_i}_*(e_t)}|&< C\cdot {\epsilon '_i},\\ \Vert {f_i}_*(\nabla _{e_t}{e_t})^{V}\Vert _{L^{\infty }}&< C\cdot { \epsilon '_i}|(\nabla _{e_t}{e_t})^V|, \end{aligned}$$

where \(C\) is a constant independent of \(i\). It follows that

$$\begin{aligned} \lim _{i\rightarrow \infty }\Vert \tau ({f_i}^{\bot })\Vert =0. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinaei, Z. Convergence of Harmonic Maps. J Geom Anal 26, 529–556 (2016). https://doi.org/10.1007/s12220-015-9561-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-015-9561-2

Keywords

Mathematics Subject Classification

Navigation