Skip to main content
Log in

Isometries of Carnot Groups and Sub-Finsler Homogeneous Manifolds

  • Original Research
  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We show that isometries between open sets of Carnot groups are affine. This result generalizes a result of Hamenstädt. Our proof does not rely on her proof. We show that each isometry of a sub-Riemannian manifold is determined by the horizontal differential at one point. We then extend the result to sub-Finsler homogeneous manifolds. We discuss the regularity of isometries of homogeneous manifolds equipped with homogeneous distances that induce the manifold topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrachev, A.: Any sub-Riemannian metric has points of smoothness. Dokl. Akad. Nauk 424(3), 295–298 (2009)

    MathSciNet  Google Scholar 

  2. Agrachev, A., Barilari, D.: Sub-Riemannian structures on 3D Lie groups. J. Dyn. Control Syst. 18(1), 21–44 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barilari, D., Boscain, U., Le Donne, E., Sigalotti, M.: Sub-Finsler structures from the time-optimal control viewpoint for some nilpotent distributions. Preprint (2014)

  4. Benyamini, Y., Lindenstrauss, J.: Geometric nonlinear functional analysis. Vol. 1, Volume 48 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI (2000)

    Google Scholar 

  5. Berestovskiĭ, V.N.: Homogeneous manifolds with an intrinsic metric. I. Sibirsk. Mat. Zh. 29(6), 17–29 (1988)

    Google Scholar 

  6. Berestovskiĭ, V.N.: Homogeneous manifolds with an intrinsic metric. II. Sibirsk. Mat. Zh. 30(2), 14–28,225 (1989)

    MathSciNet  Google Scholar 

  7. Berestovskiĭ, V.N.: The structure of locally compact homogeneous spaces with an intrinsic metric. Sibirsk. Mat. Zh. 30(1), 23–34 (1989)

    MathSciNet  Google Scholar 

  8. Bochner, S., Montgomery, D.: Locally compact groups of differentiable transformations. Ann. Math. 2(47), 639–653 (1946)

    Article  MathSciNet  Google Scholar 

  9. Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. Volume 33 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2001)

    Google Scholar 

  10. Calabi, E., Hartman, P.: On the smoothness of isometries. Duke Math. J. 37, 741–750 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  11. Capogna, L., Cowling, M.: Conformality and \(Q\)-harmonicity in Carnot groups. Duke Math. J. 135(3), 455–479 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Capogna, L., Le Donne, E.: Smoothness of subRiemannian isometries. Preprint, submitted, arXiv:1305.5286 (2013)

  13. Clelland, J.N., Moseley, C.G.: Sub-Finsler geometry in dimension three. Differ. Geom. Appl. 24(6), 628–651 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cowling, M.G., Martini, A.: Sub-Finsler geometry and finite propagation speed. Trends in Harmonic Analysis. Volume 3 of Springer INdAM Series, pp. 147–205. Springer, Milan (2013)

    Google Scholar 

  15. Deng, S., Hou, Z.: The group of isometries of a Finsler space. Pac. J. Math. 207(1), 149–155 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fleming, R.J., Jamison, J.E.: Isometries on Banach spaces: a survey. Analysis, Geometry and Groups: A Riemann Legacy Volume. Hadronic Press Collection of Original Article, pp. 52–123. Hadronic Press, Palm Harbor (1993)

    Google Scholar 

  17. Gleason, A.M.: Groups without small subgroups. Ann. Math. 2(56), 193–212 (1952)

    Article  MathSciNet  Google Scholar 

  18. Hamenstädt, U.: Some regularity theorems for Carnot-Carathéodory metrics. J. Differ. Geom. 32(3), 819–850 (1990)

    MATH  Google Scholar 

  19. Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces, Volume 34 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2001). Corrected reprint of the 1978 original

    Google Scholar 

  20. Hladky, R.K.: Isometries of complemented sub-Riemannian manifolds. Adv. Geom. 14(2), 319–352 (2014)

  21. John, F.: Extremum Problems with Inequalities as Subsidiary Conditions. Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, pp. 187–204. Interscience Publishers Inc, New York (1948)

    Google Scholar 

  22. Kishimoto, I.: Geodesics and isometries of Carnot groups. J. Math. Kyoto Univ. 43(3), 509–522 (2003)

    MATH  MathSciNet  Google Scholar 

  23. Le Donne, E.: A metric characterization of Carnot groups. Proc. Am. Math. Soc. (2014). doi:10.1090/S0002-9939-2014-12244-1

  24. Margulis, G.A., Mostow, G.D.: The differential of a quasi-conformal mapping of a Carnot-Carathéodory space. Geom. Funct. Anal. 5(2), 402–433 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Matveev, V.S., Troyanov, M.: The Binet–Legendre metric in Finsler geometry. Geom. Topol. 16(4), 2135–2170 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mitchell, J.: On Carnot–Carathéodory metrics. J. Differ. Geom. 21(1), 35–45 (1985)

    MATH  Google Scholar 

  27. Montgomery, D., Zippin, L.: Topological Transformation Groups. Robert E. Krieger Publishing Co., Huntington (1974). Reprint of the 1955 original

    MATH  Google Scholar 

  28. Montgomery, R.: A Tour of Subriemannian Geometries, Their Geodesics and Applications. Volume 91 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2002)

    Google Scholar 

  29. Myers, S.B., Steenrod, N.E.: The group of isometries of a Riemannian manifold. Ann. Math. (2) 40(2), 400–416 (1939)

    Article  MathSciNet  Google Scholar 

  30. Palais, R.S.: On the differentiability of isometries. Proc. Am. Math. Soc. 8, 805–807 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  31. Pansu, P.: Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un. Ann. Math. (2) 129(1), 1–60 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  32. Strichartz, R.S.: Sub-Riemannian geometry. J. Differ. Geom. 24(2), 221–263 (1986)

    MATH  MathSciNet  Google Scholar 

  33. Strichartz, R.S.: Corrections to: “Sub-Riemannian geometry” [J. Differential Geom. 24 (1986), no. 2, 221–263]. J. Differ. Geom. 30(2), 595–596 (1989)

  34. Taylor, M.: Existence and regularity of isometries. Trans. Am. Math. Soc. 358(6), 2415–2423 (2006). (electronic)

    Article  MATH  Google Scholar 

  35. Warhurst, B.: Contact and Pansu differentiable maps on Carnot groups. Bull. Aust. Math. Soc. 77(3), 495–507 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Both authors would like to thank Université Paris Sud, Orsay, where part of this research was conducted. This paper has benefited from discussions with E. Breuillard and P. Pansu. Special thanks go to them. Moreover, the authors are particularly grateful to S. Nicolussi Golo and to the anonymous referee for their thorough review of the paper and their helpful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Le Donne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Donne, E., Ottazzi, A. Isometries of Carnot Groups and Sub-Finsler Homogeneous Manifolds. J Geom Anal 26, 330–345 (2016). https://doi.org/10.1007/s12220-014-9552-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-014-9552-8

Keywords

Mathematics Subject Classification

Navigation