Skip to main content
Log in

A Maximum Principle for Generalizations of Harmonic Maps in Hermitian, Affine, Weyl, and Finsler Geometry

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this note we prove that the maximum principle of Jäger–Kaul for harmonic maps holds for a more general class of maps, \(V\)-harmonic maps. This includes Hermitian harmonic maps (Jost and Yau, Acta Math 170:221–254, 1993), Weyl harmonic maps (Kokarev, Proc Lond Math Soc 99:168–194, 2009), affine harmonic maps Jost and Simsir (Analysis (Munich) 29:185–197, 2009), and Finsler maps from a Finsler manifold into a Riemannian manifold. With this maximum principle we establish the existence of \(V\)-harmonic maps into regular balls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Centore, P.: Finsler Laplacians and minimal-energy maps. Int. J. Math. 11, 1–13 (2000)

    MATH  MathSciNet  Google Scholar 

  2. Calderbank, D.M.J., Pedersen, H.: Einstein-Weyl Geometry. In: Essays on Einstein Manifolds, Surveys in Differential Geometry, vol. 6. Int. Press, Boston (1999)

  3. Chen, J.-Y.: A boundary value problem for Hermitian harmonic maps and applications. Proc. Am. Math. Soc. 124, 2853–2862 (1996)

    Article  MATH  Google Scholar 

  4. Chen, Q., Jost, J., Wang, G.: The maximum principle and the Dirichlet problem for Dirac-harmonic maps. Calc. Var. P.D.E. 47(1–2), 87–116 (2012). doi:10.1007/s00526-012-0512-5

    MathSciNet  Google Scholar 

  5. Chen, Q., Jost, J., Li, J.-Y., Wang, G.: Dirac-harmonic maps. Math. Z. 254, 409–432 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Eells, J., Lemaire, L.: A report on harmonic maps. Bull. Lond. Math. Soc. 10, 1–68 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  7. Friedman, A.: Partial Differential Equations. Holt, Rinehart and Winston Inc., New York (1969)

    MATH  Google Scholar 

  8. Grunau, H.-C., Kühnel, M.: On the existence of Hermitian-harmonic maps from complete Hermitian to complete Riemannian manifolds. Math. Z. 249, 297–327 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Han, J.-W., Shen, Y.-B.: Harmonic maps from complex Finsler manifolds. Pac. J. Math. 236, 341–356 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hamilton, R.: Harmonic Maps of Manifolds with Boundary, Lecture Notes in Mathematics, vol. 471. Springer, Berlin (1975)

    Book  Google Scholar 

  11. Hartman, P.: On homotopic harmonic maps. Can. J. Math. 19, 673–687 (1967)

    Article  MATH  Google Scholar 

  12. Hildebrandt, S., Jost, J., Widman, K.O.: Harmonic mappings and minimal submanifolds. Invent. Math. 62, 269–298 (1980)

  13. Hildebrandt, S., Kaul, H., Widman, K.O.: An existence theorem for harmonic mappings of Riemannian manifolds. Acta Math. 138, 1–16 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jäger, W., Kaul, H.: Uniqueness and stability of harmonic maps and their Jacobi fields. Manuscr. Math. 28, 269–291 (1979)

    Article  MATH  Google Scholar 

  15. Jäger, W., Kaul, H.: Uniqueness of harmonic mappings and of solutions of elliptic equations on Riemannian manifolds. Math. Ann. 240, 231–250 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jost, J.: Harmonic Mappings Between Riemannian Manifolds. ANU-Press, Canberra (1984)

    Google Scholar 

  17. Jost, J.: Riemannian Geometry and Geometric Analysis, 6th edn. Universitext. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  18. Jost, J.: Two-Dimensional Geometric Variational Problems. Wiley, Hoboken (1991)

    MATH  Google Scholar 

  19. Jost, J.: Existence proofs for harmonic mappings with the help of a maximum principle. Math. Z. 184, 489–496 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  20. Jost, J., Simsir, F.M.: Affine harmonic maps. Analysis (Munich) 29, 185–197 (2009)

    MATH  MathSciNet  Google Scholar 

  21. Jost, J., Simsir, F.M.: Non-divergence harmonic maps, Harmonic maps and differential geometry, 231–238, Contemp. Math., 542, Amer. Math. Soc., Providence, RI, (2011)

  22. Jost, J., Yau, S.-T.: A nonlinear elliptic system for maps from Hermitian to Riemannian manifolds and rigidity theorem in Hermitian geometry. Acta Math. 170, 221–254 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kokarev, G.: On pseudo-harmonic maps in conformal geometry. Proc. Lond. Math. Soc. 99(3), 168–194 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kokarev, G., Kotschick, D.: Fibrations and fundamental groups of Kähler–Weyl manifolds. Proc. Am. Math. Soc. 138, 997–1010 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Li, J.-Y., Wang, M.: Liouville theorems for self-similar solutions of heat flows. J. Eur. Math. Soc. 11, 207–221 (2009)

    Article  MATH  Google Scholar 

  26. Li, J.-Y., Zhu, X.-R.: Non existence of quasi-harmonic spheres. Calc. Var. 37, 441–460 (2010)

    Article  MATH  Google Scholar 

  27. Li, Z.-Y., Zhang, X.: Hermitian harmonic maps into convex balls. Can. Math. Bull. 50, 113–122 (2007)

    Article  MATH  Google Scholar 

  28. Lichnerowicz, A.: Applications harmoniques et variétés Kähleriennes. Rend. Sem. Mat. Fis. Milano 39, 186–195 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  29. Li, Y.-X., Wang, Y.-D.: Bubbling location for \(F\)-harmonic maps and inhomogeneous Landau–Lifshitz equations. Comment. Math. Helv. 81, 433–448 (2006)

    MATH  MathSciNet  Google Scholar 

  30. Lin, F.-H., Wang, C.-Y.: Harmonic and quasi-harmonic spheres. Commun. Anal. Geom. 7, 397–429 (1999)

    MATH  Google Scholar 

  31. Lin, F.-H., Wang, C.-Y.: The Analysis of Harmonic Maps and Their Heat Flows, xii+267 pp. World Scientific Publishing Co., Pte. Ltd., Hackensack (2008)

  32. Loubeau, E.: Hermitian harmonic maps. Beiträge Algebra Geom. 40, 1–14 (1999)

    MATH  MathSciNet  Google Scholar 

  33. Ni, L.: Hermitian harmonic maps from complete Hermitian manifolds to complete Riemannian manifolds. Math. Z. 232, 331–355 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  34. Mo, X.: Harmonic maps from Finsler manifolds Illinois. J. Math. 45, 1331–1345 (2001)

    MATH  Google Scholar 

  35. Mo, X., Yang, Y.-Y.: The existence of harmonic maps from Finsler manifolds to Riemannian manifolds. Sci. China Ser. A 48, 115–130 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  36. Schoen, R., Yau, S.-T.: Lectures on harmonic maps. In: Conference Proceedings and Lecture Notes in Geometry and Topology, II, International Press, Cambridge (1997)

  37. Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of 2-spheres. Ann. Math. 113, 1–24 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  38. Ting, D.: Hermitian harmonic maps from complete manifolds into convex balls. Nonlinear Anal. 72, 3457–3462 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  39. von der Mosel, H., Winklmann, S.: On weakly harmonic maps from Finsler to Riemannian manifolds. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 39–57 (2009)

    Article  MATH  Google Scholar 

  40. von Wahl, W.: The continuity or stability method for nonlinear elliptic and parabolic equations and systems. In: Proceedings of the Second International Conference on Partial Differential Equations (Italian) (Milan, 1992). Rend. Sem. Mat. Fis. Milano, 62, 157–183 (1992)

  41. von Wahl, W.: Klassische Lösbarkeit im Grossen für nichtlineare parabolische Systeme und das Verhalten der Lösungen für \(t\rightarrow +\infty \). Nachr. der Akad. der Wiss. Göttingen II: Math.-Phys. Kl. 5, 131–177 (1981)

    Google Scholar 

  42. Wang, G., Xu, D.: Harmonic maps from smooth measure spaces. Int. J. Math. 23(9), 1250095 (2012)

    Article  Google Scholar 

  43. Xin, Y.-L.: Geometry of Harmonic Maps, Progr. Nonlinear Differential Equations Appl. Birkhäuser, Berlin (1996)

    Google Scholar 

Download references

Acknowledgments

The research for this paper has been supported by the ERC Advanced Grant FP7-267087. The research of QC is also partially supported by NSFC and RFDP. GW is supported by SFB/TR71 of DFG. The authors thank the Max Planck Institute for Mathematics in the Sciences for good working conditions when this work was carried out

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guofang Wang.

Additional information

Communicated by Michael Wolf.

Appendix

Appendix

For the convenience of the reader, we recall the extended Sobolev inequality.

Theorem A

(cf. [7], p. 27, Theorem 10.1.) Let \(\Omega \) be a bounded domain in \({\mathbb {R}}^m\) with \(\partial \Omega \in C^k\), and let \(u\) be any function in \(W^{k,r}(\Omega )\cap L^q(\Omega ),\,1\le r, q\le \infty \). For any integer \(j,\,0\le j <k\), and for any number \(a\) in the interval \(j/k\le a \le 1\), set

$$\begin{aligned} \frac{1}{p}=\frac{j}{m}+a\left( \frac{1}{r}-\frac{k}{m}\right) +(1-a)\frac{1}{q}. \end{aligned}$$

If \(k-j-m/r\) is not a nonnegative integer, then

$$\begin{aligned} \Vert D^ju\Vert ^{0,p}_\Omega \le C (\Vert u\Vert ^{k,r}_\Omega )a(\Vert u\Vert ^{0,q}_\Omega )^{1-a}. \end{aligned}$$
(46)

If \(k-j-m/r\) is a nonnegative integer, then (46) holds for \(a=j/k\). The constant \(C\) depends only on \(\Omega , r, q, k, j, a\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Jost, J. & Wang, G. A Maximum Principle for Generalizations of Harmonic Maps in Hermitian, Affine, Weyl, and Finsler Geometry. J Geom Anal 25, 2407–2426 (2015). https://doi.org/10.1007/s12220-014-9519-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-014-9519-9

Keywords

Mathematics Subject Classification

Navigation