Skip to main content
Log in

Second Order Rectifiability of Integral Varifolds of Locally Bounded First Variation

  • Published:
Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

It is shown that every integral varifold in an open subset of Euclidean space whose first variation with respect to area is representable by integration can be covered by a countable collection of submanifolds of the same dimension of class 2 and that their mean curvature agrees almost everywhere with the variationally defined generalized mean curvature of the varifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Commun. Pure Appl. Math. 12, 623–727 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Commun. Pure Appl. Math. 17, 35–92 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  3. Allard, W.K.: On the first variation of a varifold. Ann. Math. 95, 417–491 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  4. Almgren, F.J. Jr.: Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure. Ann. Math. 87, 321–391 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  5. Almgren, F.: Deformations and multiple-valued functions. In: Geometric Measure Theory and the Calculus of Variations, Arcata, Calif., 1984. Proc. Sympos. Pure Math., vol. 44, pp. 29–130. Amer. Math. Soc., Providence (1986)

    Chapter  Google Scholar 

  6. Almgren, F.J. Jr.: Q-valued functions minimizing Dirichlet’s integral and the regularity of area-minimizing rectifiable currents up to codimension 2. In: World Scientific Monograph Series in Mathematics. World Scientific Publishing Co. Inc., River Edge (2000). With a preface by Jean E. Taylor and Vladimir Scheffer

    Google Scholar 

  7. Ambrosio, L., Masnou, S.: A direct variational approach to a problem arising in image reconstruction. Interfaces Free Bound. 5(1), 63–81 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Anzellotti, G., Serapioni, R.P.: -rectifiable sets. J. Reine Angew. Math. 453, 1–20 (1994)

    MathSciNet  MATH  Google Scholar 

  9. Brakke, K.A.: The Motion of a Surface by Its Mean Curvature. Mathematical Notes, vol. 20. Princeton University Press, Princeton (1978)

    MATH  Google Scholar 

  10. Caffarelli, L.A.: Interior a priori estimates for solutions of fully nonlinear equations. Ann. Math. 130(1), 189–213 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Calderón, A.P., Zygmund, A.S.: Local properties of solutions of elliptic partial differential equations. Stud. Math. 20, 171–225 (1961)

    MATH  Google Scholar 

  12. De Giorgi, E.: Frontiere orientate di misura minima. In: Seminario di Matematica della Scuola Normale Superiore di Pisa, 1960–61. Editrice Tecnico Scientifica, Pisa (1961)

    Google Scholar 

  13. Dong, H., Kim, D.: L p  solvability of divergence type parabolic and elliptic systems with partially BMO coefficients. Calc. Var. Partial Differ. Equ. 40, 357–389 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dunford, N., Schwartz, J.T.: Linear Operators. Part I. Wiley Classics Library. Wiley, New York (1988). General theory, With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1958 original, A Wiley-Interscience Publication

    MATH  Google Scholar 

  15. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  16. Federer, H.: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, vol. 153. Springer, New York (1969)

    MATH  Google Scholar 

  17. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition

    MATH  Google Scholar 

  18. Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific, River Edge (2003)

    Book  MATH  Google Scholar 

  19. Hutchinson, J.E.: Second fundamental form for varifolds and the existence of surfaces minimising curvature. Indiana Univ. Math. J. 35(1), 45–71 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lawson, H.B. Jr., Osserman, R.: Non-existence, non-uniqueness and irregularity of solutions to the minimal surface system. Acta Math. 139(1–2), 1–17 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mantegazza, C.: Curvature varifolds with boundary. J. Differ. Geom. 43(4), 807–843 (1996)

    MathSciNet  MATH  Google Scholar 

  22. Menne, U.: Some applications of the isoperimetric inequality for integral varifolds. Adv. Calc. Var. 2, 247–269 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Menne, U.: A Sobolev Poincaré type inequality for integral varifolds. Calc. Var. Partial Differ. Equ. 38, 369–408 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Menne, U.: Decay estimates for the quadratic tilt-excess of integral varifolds. Arch. Ration. Mech. Anal. (2011). doi:10.1007/s00205-011-0468-1

    Google Scholar 

  25. Morrey, C.B., Jr.: Multiple Integrals in the Calculus of Variations. Die Grundlehren der mathematischen Wissenschaften, vol. 130. Springer, New York (1966)

    MATH  Google Scholar 

  26. Mugnai, L., Röger, M.: Convergence of perturbed Allen Cahn equations to forced mean curvature flow (2009). arXiv:0902.1816v1 [math.AP]

  27. Rešetnyak, Y.G.: Generalized derivatives and differentiability almost everywhere. Math. USSR Sb. 4, 293–302 (1968)

    Article  Google Scholar 

  28. Röger, M.: Solutions for the Stefan problem with Gibbs-Thomson law by a local minimisation. Interfaces Free Bound. 6(1), 105–133 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Röger, M., Schätzle, R.: On a modified conjecture of De Giorgi. Math. Z. 254(4), 675–714 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schätzle, R.: Hypersurfaces with mean curvature given by an ambient Sobolev function. J. Differ. Geom. 58(3), 371–420 (2001)

    MATH  Google Scholar 

  31. Schätzle, R.: Quadratic tilt-excess decay and strong maximum principle for varifolds. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 3(1), 171–231 (2004)

    MathSciNet  MATH  Google Scholar 

  32. Schätzle, R.: Lower semicontinuity of the Willmore functional for currents. J. Differ. Geom. 81(2), 437–456 (2009)

    MATH  Google Scholar 

  33. Simon, L.M.: Lectures on Geometric Measure Theory. Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3. Australian National University Centre for Mathematical Analysis, Canberra (1983)

    MATH  Google Scholar 

  34. Simon, L.: Schauder estimates by scaling. Calc. Var. Partial Differ. Equ. 5(5), 391–407 (1997)

    Article  MATH  Google Scholar 

  35. Trudinger, N.S.: On the twice differentiability of viscosity solutions of nonlinear elliptic equations. Bull. Aust. Math. Soc. 39(3), 443–447 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge (1987). Translated from the German by C.B. Thomas and M.J. Thomas

    MATH  Google Scholar 

  37. Ziemer, W.P.: Weakly Differentiable Functions. Graduate Texts in Mathematics, vol. 120. Springer, New York (1989). Sobolev spaces and functions of bounded variation

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Menne.

Additional information

Communicated by Steven G. Krantz.

The author acknowledges financial support via the DFG Forschergruppe 469. The major part of this work was accomplished while the author was at the University of Tübingen. Some parts were done at the ETH Zürich and the work was put in its final form at the AEI Golm. AEI publication number AEI-2008-065.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menne, U. Second Order Rectifiability of Integral Varifolds of Locally Bounded First Variation. J Geom Anal 23, 709–763 (2013). https://doi.org/10.1007/s12220-011-9261-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-011-9261-5

Keywords

Mathematics Subject Classification (2000)

Navigation