Skip to main content
Log in

Control of Rayleigh-Bénard Convection in a Fluid Layer with Internal Heat Generation

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The control of the onset of convection in a horizontal fluid layer with internal heat generation is studied. The horizontal boundaries of the system are cooled isothermally. The stability of the fluid layer is investigated on the basis of the linear stability theory and the resulting eigenvalues problem is solved numerically. Upon using a feedback proportional control, the heating power of the system is modulated in order to counteract any deviations of the temperature of the fluid from its conductive value. As a result, it is possible to postpone (or advance) significantly the onset of motion. The optimal positions of the thermal sensors can be predicted on the basis of the linear stability theory. The linear stability analysis also reveals the possible existence of Hopf’s bifurcations at the onset of motion. This type of bifurcation can be delayed using differential controllers. Two-dimensional numerical simulations of the full governing equations are carried out and found to agree well with the prediction of the linear stability theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A :

aspect ratio of the cavity

a :

wave number

C p :

specific heat at constant pressure of the fluid, J/(kgK)

D :

differential operator, d/dy

E′:

electric field magnitude, V/m

\(\vec {g}\) :

gravitational acceleration, m/s2

G′:

proportional controller’s gain, s− 1

G t :

differential controller’s gain

k :

thermal conductivity, W/(m.K)

L′:

height of fluid layer, m

P′:

pressure in the fluid layer, N/m2

Pr:

Prandtl number, ν/α

\(\dot {q}^{\prime }\) :

specific heating power, K/s

\(\dot {q}^{\prime }_{E} \) :

constant part of specific heating power, K/s

\(\dot {q}^{\prime }_{A} \) :

part of specific heating power supplied by the actuator, K/s

r :

ratio between the controlled and uncontrolled critical Rayleigh number

R a :

Rayleigh number, \(g\beta ^{\prime }\dot {q}^{\prime }_{E} L^{\prime 5} /\nu \alpha ^{2} \)

R a c :

critical Rayleigh number

t′:

time, s

T′:

temperature in the fluid layer, K

\(\vec {V}^{\prime }\) :

velocity vector in fluid layer, m/s

x′:

horizontal coordinate in fluid layer, m

y′:

vertical coordinate in fluid layer, m

\(y^{\prime }_{s} \) :

vertical position of the temperature sensor, m

α :

thermal diffusivity of the fluid, m2/s

β :

thermal expansion coefficient, K− 1

μ :

dynamic viscosity of fluid, Ns/m2

υ :

kinematic viscosity of fluid, m2/s

ρ :

density of fluid, kg/m3

σ :

electric conductivity, Ω− 1m− 1

c :

critical condition

r :

reference state

0:

value at y = 0

1:

value at y = 1

′:

refers to dimensional variable

References

  • Abidin, N.H.Z., Mokhtar, N.F.M., Arbin, N., Said, J.M., Arifin, N.M.: Marangoni convection in a micropolar fluid with feedback control. In: IEEE Symposium on Business and Industrial Applications, pp. 558–562 (2012)

  • Bachok, N., Arifin, N.M.D.: Feedback control of the Marangoni-Bénard convection in a horizontal fluid layer with internal heat generation. Microgravity Sci. Technol 22, 97–105 (2010)

    Article  Google Scholar 

  • Bau, H.H.: Control of Marangoni-Bénard convection. Int. J. Heat Mass Transfer. 42, 1327–1341 (1999)

    Article  Google Scholar 

  • Bénard, H.: Les tourbillons cellulaires dans une nappe liquide. Rev. Gén. Sci. Pures Appl. 11, 1261–1271 (1900)

    Google Scholar 

  • Bratsun, D., Krasnyakov, I., Zyuzgin, A.: Active control of thermal convection in a rectangular loop by changing its spatial orientation. Microgravity Sci. Technol. 30, 43–52 (2018)

    Article  Google Scholar 

  • Chandrasekhar, S.: Hydrodynamic and hydromagnetic stability. Courier Dover, New York (1961)

    MATH  Google Scholar 

  • Delucas, L.J., Moore, K.M., Long, M.L., Rouleau, R., Bray, T., Crysel, W., Weise, L.: Protein crystal growth in space, past and future. J. Crystal Growth 237-239, 1646–1650 (2002)

    Article  Google Scholar 

  • Getling, A.V.: Rayleigh-Bénard convection: Structures and dynamics. World Scientific, Singapore (1998)

    Book  Google Scholar 

  • Howle, L.E.: Active control of Rayleigh-Bénard convection. Phys. Fluids 9, 1861–1863 (1997a)

  • Howle, L.E.: Control of Rayleigh-Bénard convection in a small aspect ratio container. Int. J. Heat Mass Trans 40, 817–822 (1997b)

  • Khalid, I.K., Mokhtar, N.F.M., Arifin, N.M.: Rayleigh-Bénard convection in microplar fluid with feedback control effect. World Appl. Sci. J. 21, 112–118 (2013)

    Google Scholar 

  • Khalid, I.K., Mokhtar, N.F.M., Hashim, I., Ibrahim, Z.B., Gani, S.S.A.: Effect of internal heat source on the onset of double-diffusive convection in a rotating nanofluid layer with feedback control strategy. Advances in Mathematical Physics, 2789024 (2017)

  • Kulacki, F.A., Goldstein, R.J.: Hydrodynamic instability in fluid layers with uniform volumetric energy sources. Appl. Sci. Res. 31, 81–109 (1975)

    Article  Google Scholar 

  • Lappa, M.: Control of convection patterning and intensity in shallow cavities by harmonic vibrations. Microgravity Sci. Technol. 28, 29–39 (2016)

    Article  Google Scholar 

  • Maekawa, T., Tanasawa, I.: Effect of magnetic field on onset of Marangoni convection. Int. J. Heat Mass Transfer 31, 285–293 (1988)

    Article  Google Scholar 

  • Mamou, M., Robillard, L., Vasseur, P.: Thermoconvective instability in a horizontal porous cavity saturated with cold water. Int. J. Heat Mass Transfer 42, 4487–4500 (1999)

    Article  Google Scholar 

  • Marimbordes, T., Ould El Moctar, A., Peerhossaini, H.: Active control of natural convection in a fluid layer with volume heat dissipation. Int. J. Heat Mass Transfer 45, 667–678 (2002)

    Article  Google Scholar 

  • Mokhtar, N.F.M., Khalid, I.K.: Stabilization of convective instability in micropolar fluid model by feedback control strategy subjected to internal heat source. Int. J. Math. Models Methods Appl. Sci. 10, 27–33 (2016)

    Google Scholar 

  • Mokhtar, N.F.M., Khalid, I.K., Arifin, N.M.: Effect of internal heat generation on Bénard-Marangoni convection in micropolar fluid with feedback control. Icast Contemp. Math. Math. Phys. Their Appl. 435, 1–17 (2012). https://doi.org/10.88/1742-6596/435/1/012029

    Google Scholar 

  • Mokhtar, N.F.M., Khalid, I.K., Gani, S.S.A.: Natural convection in a nanofluid layer with feedback control strategy. Int. J. Manag. Appl. Sci. 5, 30–35 (2017a)

  • Mokhtar, N.F.M., Khalid, I.K., Siri, Z., Ibrahim, Z.B., Gani, S.S.A.: Control strategy on the double-diffusive convection in a nanofluid layer with internal heat generation. Phys. Fluids 29, 107105 (2017b)

  • Muller, G.: Convection and inhomogeneities in crystal growth from the melt. In: Freyhardt, H.C. (ed.) Crystal Growth, Properties and Applications. Springer, Berlin (1988)

  • Nanjundappa, C.E., Shivakumara, I.S., Arunkumar, R.: Onset of benard-marangoni ferroconvection with internal heat generation. Microgravity Sci. Technol. 23, 29–39 (2011)

    Article  Google Scholar 

  • Nield, D.A.: Effects of a magnetic field on streamlines in Bénard convection cells induced by surface tension and buoyancy. ZAMP 17, 340–342 (1966)

    Google Scholar 

  • Or, A.C., Kelly, A.C., Cortelezzi, R.E., Speyer, J.L.: Control of long-wavelength Marangoni-Bénard convection. J. Fluid Mech. 387, 321–341 (1999)

    Article  Google Scholar 

  • Rayleigh, L.: On convection currents in a horizontal layer of fluid when the higher temperature is in the other side. Philo Mag. 32, 529–543 (1916)

    Article  Google Scholar 

  • Roberts, P.H.: Convection in horizontal layers with internal heat generation. Theory J. Fluid Mech. 30, 33–49 (1967)

    Article  Google Scholar 

  • Sparrow, E.M., Goldstein, R.J., Jonsson, V.K.: Thermal instability in a horizontal fluid layer: effect of boundary conditions and non-linear temperature profile. J. Fluid Mech. 18, 513–529 (1964)

    Article  MathSciNet  Google Scholar 

  • Tang, J.: Active Control of Rayleigh-Bénard Convection. PhD thesis, University of Pennsylvania (1996)

    Google Scholar 

  • Tang, J., Bau, H.H.: Stabilization of the no-motion state in Rayleigh Bénard convection through the use of feedback control. Phys. Rev. Lett. 70, 1795–1798 (1993)

    Article  Google Scholar 

  • Tang, J., Bau, H.H.: Stabilization of the no-motion state in of a horizontal fluid layer heated from below with Joule heating. J. Heat Transfer 117, 329–333 (1995)

    Article  Google Scholar 

  • Tritton, D.J., Zarraga, M.N.: Convection in horizontall layers with internal heat generation. Exp. J. Fluid Mech. 30, 21–31 (1967)

    Article  Google Scholar 

  • Watson, P.: Classical cellular convection with a spatial heat source. J. Fluid Mech. 32, 399–411 (1968)

    Article  Google Scholar 

  • Weerakoon, S.: Numerical solution of nonlinear equations in the absence of the derivative. J. Nat. Sci. Coun. Sri Lanka 24, 309–318 (1996)

    MATH  Google Scholar 

  • Wilson, S.K.: The effect of a uniform magnetic field on the onset of steady Marangoni convection in a layer of conducting fluid. Q. J. Mech. Appl. Math. 46, 211–248 (1993)

    Article  Google Scholar 

  • Wilson, S.K.: The effect of a uniform magnetic field on the onset of steady Marangoni convection in a layer of conducting fluid with a prescribed heat flux at its lower boundary. Phys. Fluid 6, 3591–3600 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Alloui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alloui, Z., Alloui, Y. & Vasseur, P. Control of Rayleigh-Bénard Convection in a Fluid Layer with Internal Heat Generation. Microgravity Sci. Technol. 30, 885–897 (2018). https://doi.org/10.1007/s12217-018-9651-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-018-9651-4

Keywords

Navigation