Skip to main content

Advertisement

Log in

Visualization Study of Supercritical Fluid Convection and Heat Transfer in Weightlessness by Interferometry: A Brief Review

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Supercritical fluids have become a hot topic in recent years, due to their wide applications in chemical and energy systems. With its sensitive thermal-transport properties in the near-critical region, supercritical/near-critical fluids behaviors, under both microgravity and terrestrial conditions, have become very interesting and challenging topic. This brief review is focused on the visualization experiments of fluid convection and heat transfer related critical phenomena by interferometer. Due to the sensitive property changes of critical fluids, it is very difficult to control and measure the supercritical fluid behaviors. In this review, non-intrusive visualization systems by interferometry are introduced and analyzed for experimental studies of fluids in the near-critical region. For near-critical and supercritical experiments, the temperature/density control and parameter analysis are of critical importance. The analysis of boundary conditions, convection behaviors and energy transfer modes of critical fluids, mainly under weightlessness, are also reviewed with recent opinions toward future development. It is hoped that this review could be helpful for related studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Amiroudine, S., Zappoli, B.: Piston Effect induced thermal oscillations at the Rayleigh-Benard threshold in supercritical 3He. Phys Rev. Lett 90, 105303 (2003)

    Article  Google Scholar 

  • Assenheimer, M., Steinberg, V.: Rayleigh-Bénard convection near the gas-liquid critical point. Phys. Rev. Lett 70, 3888 (1993)

    Article  Google Scholar 

  • Azuma, H., Yoshihara, S., Onishi, M., Ishii, K., Masuda, S., Maekawa, T.: Natural convection driven in CO2 near its critical point under terrestrial gravity conditions. Int. J. Heat Mass Trans 42, 771–774 (1999)

    Article  Google Scholar 

  • Bailly, D., Zappoli, B.: Hydrodynamic theory of density relaxation in near-critical fluids. Phys. Rev. E 62, 2353–2368 (2000)

    Article  Google Scholar 

  • Barmatz, M., Hahn, I., Lipa, J.A., Duncan, R.V.: Critical phenomena in microgravity: Past, present, and future. Rev. Mod. Phys 79, 1–51 (2007)

    Article  Google Scholar 

  • Bartscher, C., Straub, J.: Dynamic behavior of a pure fluid at and near its critical density under microgravity and 1g. (Paper presented at the Fourteenth Symposium on Thermophysical Properties, June 25-30, 2000, Boulder, Colorado, U.S.A). Int. J. Thermophys 23, 77–87 (2002)

    Article  Google Scholar 

  • Beysens, D.: Critical point in space: a quest for universality. Microgravity Sci. Technol. 26, 201–218 (2014)

    Article  Google Scholar 

  • Beysens, D., Chatain, D., Nikolayev, V.S., Ouazzani, J., Garrabos, Y.: Possibility of long-distance heat transport in weightlessness using supercritical fluids. Phys. Rev. E 82, 061126 (2010)

    Article  Google Scholar 

  • Beysens, D., Frohlich, T., Garrabos, Y.: Heat can cool near-critical fluids. Phys. Rev. E 84, 051201 (2011)

    Article  Google Scholar 

  • Beysens, D., Garrabos, Y., Wunenburger, R., Lecoutre, C.: Can heat flow backward? Unusual thermal phenomena observed in near-critical fluids. Phys. A 314, 427–436 (2002)

    Article  Google Scholar 

  • Boukari, H., Shaumeyer, J.N., Briggs, M.E., Gammon, R.W.: Critical speeding up in pure fluids. Phys. Rev. A 41, 2260–2264 (1990)

    Article  Google Scholar 

  • Carles, P.: A brief review of the thermophysical properties of supercritical fluids. J. Supercrit. Fluids 53, 2–11 (2010)

    Article  Google Scholar 

  • Chen, L.: Microchannel flow dynamics and heat transfer of near-critical fluid. Springer, Singapore (2016)

    Google Scholar 

  • Chen, L., Zhang, X.R., Yamaguchi, H., Liu, Z.S.: Effect of heat transfer on the instabilities and transitions of supercritical CO2 flow in a natural circulation loop. Int. J. Heat Mass Trans 53, 4101–4111 (2010)

    Article  MATH  Google Scholar 

  • Chen, L., Zhang, X.R., Cao, S.M., Bai, H.: Study of trans-critical CO2 natural convection flow with unsteady heat input and its implications on system control. Int. J. Heat Mass Trans 55, 7119–7132 (2012)

    Article  Google Scholar 

  • Chen, L., Deng, B.L., Zhang, X.R.: Experimental Study of Trans-critical and Supercritical CO2 Natural Circulation Flow in a Closed Loop. Appl. Therm. Eng. 59, 1–13 (2013a)

    Article  Google Scholar 

  • Chen, L., Zhang, X.R., Okajima, J., Maruyama, S.: Abnormal microchannel convective fluid flow near the gas-liquid critical point. Phys. A 398, 10–24 (2013b)

    Article  Google Scholar 

  • Chen, L., Zhang, X.R., Okajima, J., Maruyama, S.: Numerical simulation of near-critical fluid convective flow mixing in microchannels. Chem. Eng. Sci 97, 67–80 (2013c)

    Article  Google Scholar 

  • Chen, L., Zhang, X.R., Okajima, J., Maruyama, S.: Thermal relaxation and critical instability of near-critical fluid microchannel flow. Phys. Rev. E 87, 043016 (2013d)

    Article  Google Scholar 

  • Chen, L., Chen, Y.M., Sun, M.H., Zhang, Y.L., Zhang, X.R.: Concept design and formation of a lithium bromide–water cooling system powered by supercritical CO2 solar collector. Energ. Convers. Mgmt. 85, 313–322 (2014a)

    Article  Google Scholar 

  • Chen, L., Zhang, X.R., Jiang, B.: Effects of Heater orientations on the natural circulation and heat transfer in a supercritical CO2 rectangular loop. ASME J. Heat Trans 136, 052501 (2014b)

    Article  Google Scholar 

  • Chen, L., Zhang, X.R., Okajima, J., Komiya, A., Maruyama, S.: Numerical simulation of stability behaviors and heat transfer characteristics for near-critical fluid microchannel flows. Energ. Convers. Mgmt. 110, 407–418 (2016)

    Article  Google Scholar 

  • Chen, X.N., Zhang, D., Maschek, W., Schulenberg, T.: Solitary breeding/burning waves in a supercritical water cooled fast reactor. Energ. Convers. Mgmt. 51, 1792–1798 (2010)

    Article  Google Scholar 

  • Chiwata, Y., Onuki, A.: Thermal plumes and convection in highly compressible fluids. Phys. Rev. Lett. 87, 114301 (2001)

    Article  Google Scholar 

  • Dimmic, G.R., Chatoorgoon, V.V., Khartabil, H.F., Duffey, R.B.: Natural-convection studies for advanced CANDU reactor concepts. Nucl. Eng. Des. 215, 27–38 (2002)

    Article  Google Scholar 

  • Eckert, E.R.G., Goldstein, R.J.: Measurement in Heat Transfer. Hemisphere Publishing Corp., pp. 241–294 (1951)

  • Estler, W.T., Hocken, R., Charlton, T., Wilcox, L.R.: Coexistence curve, compressibility, and the equation of state of Xenon near the critical point. Phys. Rev. Ser. A 12, 2118–2136 (1975)

    Article  Google Scholar 

  • Frohlich, T., Guenoun, P., Bonetti, M., Perrot, F., Beysens, D., Garrabos, Y., Neindre, B., Bravais, P.: Adiabatic versus conductive heat transfer in off-critical SF6 in the absence of convection. Phys. Rev. E 54, 1544–1549 (1996)

    Article  Google Scholar 

  • Frohlich, T., Beysens, D., Garrabos, Y.: Piston effect induced thermal jets in near-critical fluids. Phys. Rev. E 74, 046307 (2006)

    Article  Google Scholar 

  • Guenoun, P., Khalil, B., Beysens, D., Garrabos, Y., Kammoun, F., Neindre, B.L., Zappoli, B.: Thermal cycle around the critical point of carbon dioxide under reduced gravity. Phys. Rev. E 47, 1531–1540 (1993)

    Article  Google Scholar 

  • Garrabos, Y., Beysens, D., Lecountre, C., Dejoan, A., Polezhaev, V., Emelianov, V.: Thermoconvectional phenomena induced by vibrations in supercritical SF6 under weightlessness. Phys. Rev. E 75, 056317 (2007)

    Article  Google Scholar 

  • Garrabos, Y., Bonetti, M., Beysens, D., Perrot, F., Frohlich, T., Carles, P., Zappoli, B.: Relaxation of a supercritical fluid after a heat pulse in the absence of gravity effects: theory and experiments. Phys. Rev. E 57, 5665–5681 (1998)

    Article  Google Scholar 

  • Gurfein, V., Beysens, D., Garrabos, Y.: Simple grid technique to measure refractive index gradients. Optics Comm 85, 147–152 (1991)

    Article  Google Scholar 

  • Granovskii, M., Dincer, I., Rosen, M.A., Pioro, I.: Performance assessment of a combined system to link a supercritical water-cooled nuclear reactor and a thermochemical water splitting cycle for hydrogen production. Energ. Convers. Mgmt. 49, 1873–1881 (2008)

    Article  Google Scholar 

  • Hasan, N., Farouk, B.: Thermoacoustic transport in supercritical fluids at near-critical and near-pseudo-critical states. J. Supercrit. Fluids 68, 13–24 (2012)

    Article  Google Scholar 

  • Hegseth, J., Oprisan, A., Garrabos, Y., Nikolayev, V.S., Lecoutre-Chabot, C., Beysens, D.: Wetting film dynamics during evaporation under weightlessness in a near-critical fluid. Phys. Rev. E 72, 031602 (2005)

    Article  Google Scholar 

  • Hohenberg, P.C., Barmatz, M.: Gravity effects near the gas-liquid critical point. Phys. Rev. A 6, 289–313 (1972)

    Article  Google Scholar 

  • Jounet, A., Zappoli, B., Mojtabi, A.: Rapid thermal relaxation in near-critical fluids and critical speeding up: Discrepancies caused by boundary effects. Phys. Rev. Lett 84, 3224–3228 (2000)

    Article  Google Scholar 

  • Kemmerle, K.: High precision thermostat: A set of experiment facilities for caloric research in space (AIAA 89-0401) Proceedings of: The 27th Aerospace Sciences Meeting, Reno, Nevada, Jan 9-12 (1989)

    Google Scholar 

  • Klein, H., Feuerbacher, B.: Gravity influence on thermal relaxation near the critical point. Phys. Lett. A 123, 183–187 (1987)

    Article  Google Scholar 

  • Klein, H., Wanders, K.: Holographic interferometry near gas/liquid critical points. AIAA J 20, 946–949 (1981)

    Article  Google Scholar 

  • Klein, H., Wanders, K.: Holographic interferometry near gas/liquid critical points: results of space lab D-1. Acta Astronautica 15, 463–465 (1987)

    Article  Google Scholar 

  • Lorenz, L.V.: Experimentale og theoretiske unders ϕ gelser over legemernes brydningsforhold. I. K. Dan. Vidensk. Selsk. Forh 8(5), 203–248 (1869)

    Google Scholar 

  • Lorenz, L.V.: Ueber die Refractionsconstante. Ann. Phys 11, 70–103 (1880)

    Article  MATH  Google Scholar 

  • Lorenz, H.A.: Concerning the relation between the velocity of propagation of light and the density and composition of media. (1878) in H.A. Lorenz: Collected Papers, 2, pp 1–119. Martinus Nijhoff, The Hague (1936)

    Google Scholar 

  • Lorenz, H.A.: The Theory of Electrons, p 145. Dover, New York (1909)

    Google Scholar 

  • Maekawa, T., Ishii, K., Ohnishi, M., Yoshihara, S.: Convective instabilities induced in a critical fluid. Adv. Space Res. 29, 589–598 (2002)

    Article  Google Scholar 

  • Maruyama, S., Shibata, T., Tsukamoto, K.: Measurement of diffusion fields of solutions using real-time phase-shift interferometer and rapid heat–transfer control system. Exp. Therm. Fluid Sci. 19, 34–48 (1999)

    Article  Google Scholar 

  • Melnikov, D.E., Ryzhkov, I.I., Mialdun, A., Shevtsova, V.: Thermovibrational convection in microgravity: preparation of a parabolic flight experiment. Micrograv. Sci. Tech. 20, 29–39 (2008)

    Article  Google Scholar 

  • Miura, Y., Yoshihara, S., Ohnishi, M., Honda, K., Matsumoto, M., Kawai, J., Ishikawa, M., Kobayashi, H., Onuki, A.: High-speed observation of the piston effect near the gas-liquid critical point. Phys. Rev. E 74(R), 010101 (2006)

    Article  Google Scholar 

  • Mohseni, M., Bazargan, M.: Entropy generation in turbulent mixed convection heat transfer to highly variable property pipe flow of supercritical fluids. Energ. Convers. Mgmt. 87, 552–558 (2014)

    Article  Google Scholar 

  • Moldover, M.R.: Visual observation of the critical temperature and density: CO2 and C2 H 4. J. Chem. Phys 61, 1766–1778 (1974)

    Article  Google Scholar 

  • Moldover, M.R., Hocken, R.J., Gammon, R.W., Sengers, J.V.: Overviews and Justifications for Low Gravity Experiments on Phase Transition and Critical Phenomena in Fluids. NBS Technical Note 925 GPO, Washington, D.C., U.S (1976)

  • Moldover, M.R., Sengers, J.V., Gammon, R.W., Hocken, R.J.: Gravity effects in fluids near the gas-liquid critical point. Rev. Mod. Phys 51, 79 (1979)

    Article  Google Scholar 

  • Nakano, A., Shiraishi, M., Murakami, M.: Application of laser holography interferometer to heat transport phenomena near the critical point of nitrogen. Cryogenics 41, 429–435 (2001)

    Article  Google Scholar 

  • Nakano, A., Shiraishi, M.: Piston effect in supercritical nitrogen around the pseudo-critical line. Int. Commu. Heat Mass Trans 32, 1152–1164 (2005a)

    Article  Google Scholar 

  • Nakano, A., Shiraishi, M.: Visualization for heat and mass transport phenomena in supercritical artificial air. Cryogenics 45, 557–565 (2005b)

    Article  Google Scholar 

  • Nakano, A.: Studies on piston and soret effects in binary mixture supercritical fluid. Int. J. Heat Mass Trans 50, 4678–4687 (2007)

    Article  MATH  Google Scholar 

  • NIST Standard Reference Database-REFPROP: Version 8.0 (2006)

  • Nitsche, K., Straub, J., Lange, R.: Ergebnisse des TEXUS-8-Experimentes Phasenumwandlung. Forschungsbericht Luft- und Raumfahrt, BMFT (1984)

  • Ohnishi, M., Yoshihara, S., Sakurai, M., Miura, Y., Ishikawa, M., Kobayshi, H., Takenouchi, T., Kawai, J., Honda, K., Matsumoto, M.: Ultra-sensitive high-speed density measurement of the ‘piston effect’ in a critical fluid. Micrograv. Sci. Tech. 16, 306–310 (2005)

    Article  Google Scholar 

  • Onuki, A., Hao, H., Ferrell, R.A.: Fast adiabatic equilibrium in a single-component fluid near the liquid-vapor critical point. Phys. Rev. A 41, 2256–2260 (1990)

    Article  Google Scholar 

  • Onuki, A.: Thermoacoustic effects in superciritcal fluids near the critical point: Resonace, piston effect and acoustic emission and reflection. Phys. Rev. E 76, 061126 (2007)

    Article  MathSciNet  Google Scholar 

  • Oshima, K., Hara, T.: Fluid Dynamic Measurements using holographic interferometry. Proceedings of the second Symposium on Flow Visualization. ISAS, pp 47–55. University of Tokyo, Japan (1974)

    Google Scholar 

  • Pioro, I.L., Khartabil, H.F., Duffey, R.B.: Heat transfer to supercritical fluids flowing in channels-empirical correlations (survey). Nucl. Eng. Des. 230, 69–91 (2004)

    Article  Google Scholar 

  • Rice, O.K., Chang, D.R.: Density fluctuations and the specific heat near the critical point. Physica 74, 266–276 (1974a)

    Article  Google Scholar 

  • Rice, O.K., Chang, D.R.: Density fluctuations and the specific heat near the critical point. II. Physica 78, 490–499 (1974b)

    Article  Google Scholar 

  • Sarkar, J.: Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion. Renew. Sust. Energ. Rev. 48, 434–451 (2015)

    Article  Google Scholar 

  • Schoenes, F.J.: Light scattering and absolute determination of the compressibility of CClF3 near the Critical Points. Berichte der Bunsengesellschaft 76, 228–231 (1976)

    Google Scholar 

  • Settles, G.S.: Schlieren and Shadowgraph Techniques: visualizing phenomena in transparent media. Springer (2001)

  • Sengers, J.M.H.L., Straub, J., Vicentini-Missoni, M.: Coexistence Curves of CO2, N2O, and CClF3 in the Critical Region. J. Chem. Phys 54, 5034–5050 (1971)

    Article  Google Scholar 

  • Simon, H.A., Eckert, E.R.G.: Laminar free convection in carbon dioxide near its critical point. Int. J. Heat Mass Trans 6, 681–690 (1963)

    Article  Google Scholar 

  • Shen, B., Zhang, P.: An overview of heat transfer near the liquid-gas critical point under the influence of the piston effect: Phenomena and theory. Int. J. Therm. Sci 71, 1–19 (2013)

    Article  Google Scholar 

  • Shoji, E., Komiya, A., Okajiama, J., Maruyama, S.: Development of quasi common path phase-shifting interferometer for measurement of natural convection fields. Int. J. Heat Mass Trans 55, 7460–7470 (2012)

    Article  Google Scholar 

  • Sommerfeld, A.: Electrodynamics. Academic Press, London (1952)

    MATH  Google Scholar 

  • Sommerfeld, A.: Optics. Academic Press, New York (1959)

    Google Scholar 

  • Straub, J.: Highs and lows of 30 years research of fluid physics in microgravity, a personal memory. J. Microgravity Sci. Technol 18, 14–20 (2006)

    Article  Google Scholar 

  • Straub, J., Lange, R., Nitsche, K., Kemmerle, K.: Isochoric specific heat of sulfur hexafluoride at the critical point: Laboratory results and outline of a spacelab experiment for the d1-mission in 1985. (Paper presented at the Ninth Symposium on Thermophysical Properties, June 24-27, 1985, Boulder, Colorado, U.S.A.) Int. J. Thermophys 7, 343–356 (1986)

    Article  Google Scholar 

  • Straub, J., Nitsche, K.: Isochoric heat capacity cv at the critical point of SF6 under micro and earth gravity: results of the German Spacelab Mission D1 Proceedings of: The 11th Symposium of Thermophysical Properties, Boulder, Co. USA (1991)

    Google Scholar 

  • Takahashi, Y., Chen, L., Okajima, J., Iga, Y., Komiya, A., Maruyama, S.: Interferometric measurement and numerical comparisons of supersonic heat transfer flows in microchannel. Appl. Thermal. Eng. 109, 582–590 (2016)

    Article  Google Scholar 

  • Torres, J.F., Komiya, A., Shoji, E., Okajiama, J., Maruyama, S.: Development of phase-shifting interferometry for measurement of isothermal diffusion coefficients in binary solutions. Opt. Lasers Eng. 50, 1287–1296 (2012)

    Article  Google Scholar 

  • Vest, C.M.: Holographic Interferometry. Wiley, New York (1979)

    Google Scholar 

  • Wang, K., He, Y.L.: Thermodynamic analysis and optimization of a molten salt solar power tower integrated with a recompression supercritical CO2 Brayton cycle based on integrated modeling. Energ. Convers. Mgmt. 135, 336–350 (2017)

    Article  Google Scholar 

  • Wang, L.G., Yang, Y.P., Dong, C.Q., Morosuk, T., Tsatsaronis, G.: Parametric optimization of supercritical coal-fired power plants by MINLP and differential evolution. Energ. Convers. Mgmt. 85, 828–838 (2014)

    Article  Google Scholar 

  • Wetzler, D.E., Aramendia, P.F., Japas, M.L., Fernandez-Prini, R.: Thermal diffusivity in supercritical fluids measured by thermal lensing. Int. J. Thermophys 19, 27–41 (1998)

    Article  Google Scholar 

  • Wilkinson, R.A.: Density relaxation of liquid-vapor critical fluids in earth’s gravity. Int. J. Thermophys 19, 1175–1183 (1998)

    Article  Google Scholar 

  • Yang, C.N., Lee, T.D.: Statistical theory of equations of state and phase transitions. I. Theory of Condensation. Phys. Rev. 87, 404 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, T.D., Yang, C.N.: Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model. Phys. Rev. 87, 410 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  • Zappoli, B., Bailly, D., Garrabos, Y., Neindre, B.L., Guenoun, P., Beysens, D.: Anomalous heat transport by the piston effect in supercritical fluids under zero gravity. Phys. Rev. A 41, 2264–2268 (1990)

    Article  Google Scholar 

  • Zappoli, B., Carles, P.: Thermoacoustic nature of the critical speeding-up. Euro. J. Mech. B- Fluids 14, 41–65 (1995)

    MATH  Google Scholar 

  • Zappoli, B.: Near-critical fluid hydrodynamics. Comptes Rendus Mecanique 331, 713–726 (2003)

    Article  MATH  Google Scholar 

  • Zappoli, B., Beysens, D., Garrabos, Y.: Heat transfer and related effects in supercritical fluids. Springer, New York (2015)

    Book  MATH  Google Scholar 

  • Zhang, X.R., Chen, L., Yamaguchi, H.: Natural convective flow and heat transfer of supercritical CO2 in a rectangular circulation loop. Int. J. Heat Mass Trans 53, 4112–4122 (2010)

    Article  MATH  Google Scholar 

  • Zhang, X.R., Zhang, Y.L., Chen, L.: Experimental study on solar thermal conversion based on supercritical natural convection. Renew. Energ. 62, 610–618 (2014)

    Article  Google Scholar 

  • Zyuzgin, A.V., Putin, G.F., Kharisov, A.F.: Ground modeling of thermovibrational convection in real weightlessness. Fluid Dyn. 42, 354–361 (2007)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The support from JST-CREST (Team Lead: Prof. S. Maruyama, Tohoku University, Japan) and JSPS Overseas Researcher Grant (Dr. Lin Chen, Project No. 16F16068) are gratefully acknowledged by the authors. The authors would also like to thank Prof. B. Zappoli (CNES, France), Prof. D. Beysens (ESPCI, France), Prof. Y. Garrabos (ICMCB, France), Prof. A. Nakano (AIST, Japan), Prof. R. Smith, Prof. E. Shoji (Tohoku University) for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, BL., Kanda, Y., Chen, L. et al. Visualization Study of Supercritical Fluid Convection and Heat Transfer in Weightlessness by Interferometry: A Brief Review. Microgravity Sci. Technol. 29, 275–295 (2017). https://doi.org/10.1007/s12217-017-9546-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-017-9546-9

Keywords

Navigation