Skip to main content

Advertisement

Log in

Enrichment of Inorganic Martian Dust Simulant with Carbon Component can Provoke Neurotoxicity

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Carbon is the most abundant dust-forming element in the interstellar medium. Tremendous amount of meteorites containing plentiful carbon and carbon-enriched dust particles have reached the Earth daily. National Institute of Health panel accumulates evidences that nano-sized air pollution components may have a significant impact on the central nervous system (CNS) in health and disease. During inhalation, nano-/microsized particles are efficiently deposited in nasal, tracheobronchial, and alveolar regions and can be transported to the CNS. Based on above facts, here we present the study, the aims of which were: 1) to upgrade inorganic Martian dust simulant derived from volcanic ash (JSC-1a/JSC, ORBITEC Orbital Technologies Corporation, Madison, Wisconsin) by the addition of carbon components, that is, nanodiamonds and carbon dots; 2) to analyse acute effects of upgraded simulant on key characteristics of synaptic neurotransmission; and 3) to compare above effects with those of inorganic dust and carbon components per se. Acute administration of carbon-containing Martian dust analogues resulted in a significant decrease in transporter-mediated uptake of L-[14C]glutamate (the major excitatory neurotransmitter) and [3H]GABA (the main inhibitory neurotransmitter) by isolated rat brain nerve terminals. The extracellular level of both neurotransmitters increased in the presence of carbon-containing Martian dust analogues. These effects were associated with action of carbon components of upgraded Martian dust simulant, but not with its inorganic constituent. This fact indicates that carbon component of native Martian dust can have deleterious effects on extracellular glutamate and GABA homeostasis in the CNS, and so glutamate- and GABA-ergic neurotransmission disballansing exitation and inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GABA:

γ-aminobutyric acid; [3H]GABA - (γ-[2,3-3H(N)]-aminobutyric acid)

MD:

Martian dust simulant

NDs:

Nanodiamonds

CDs:

Carbon dots synthesized from β-alanine

ND-MD:

Nanodiamond-containing Martian dust simulant

CD-MD:

Carbon dot-containing Martian dust simulant

References

  • Acke, B., van den Ancker, M.E.: Resolving the disk rotation of HD 97048 and HD 100546 in the [O I] 6300 Å line: evidence for a giant planet orbiting HD 100546. Astron Astrophys. 449, 267–279 (2006)

  • Bhunia, S.K., Saha, A., Maity, A.R., Ray, S.C., Jana, N.R.: Carbon nanoparticle-based fluorescent bioimaging probes. Sci. Rep. 3, 1473 (2013)

  • Block, M.L., Elder, A., Auten, R.L., Bilbo, S.D., Chen, H., Chen, J.C., et al.: The outdoor air pollution and brain health workshop. Neurotoxicology 33, 972–984 (2012)

    Article  Google Scholar 

  • Blum, J.: Astrophysical Microgravity Experiments with Dust Particles. Microgravity Sci. Technol. 22, 517–527 (2010)

    Article  Google Scholar 

  • Borisova, T., Krisanova, N., Himmelreich, N.: Exposure of animals to artificial gravity conditions leads to the alteration of the glutamate release from rat cerebral hemispheres nerve terminals. Adv. Space Res. 33, 1362–1367 (2004)

    Article  Google Scholar 

  • Borisova, T., Himmelreich, N.: Centrifuge-Induced Hypergravity: [3H]GABA and L-[14C]glutamate Uptake, Exocytosis and Efflux Mediated by High-Affinity, Sodium-Dependent Transporters. Adv. Space Res. 36, 1340–1345 (2005)

    Article  Google Scholar 

  • Borisova, T., Krisanova, N., Himmelreich, N.: Artificial gravity loading increases the effects of the glutamate transporter inhibitors on the glutamate release and uptake in rat brain nerve terminals. Microgravity Sci. Technol. XVIII-3/4, 230–233 (2006)

    Article  Google Scholar 

  • Borisova, T., Krisanova, N.: Presynaptic transporter-mediated release of glutamate evoked by the protonophore FCCP increases under altered gravity conditions. Adv. Space Res. 42, 1971–1979 (2008)

  • Borisova, T., Krisanova, N.: Presynaptic release of glutamate by heteroexchange under altered gravity conditions. Microgravity Sci. Technol. 21, 197–201 (2009)

    Article  Google Scholar 

  • Borisova, T., Sivko, R., Borysov, A., Krisanova, N.: Diverse presynaptic mechanisms underlying methyl-beta-cyclodextrin - mediated changes in glutamate transport. Cell Mol. Neurobiol. 30, 1013–1023 (2010a)

    Article  Google Scholar 

  • Borisova, T., Krisanova, N., Sivko, R., Borysov, A.: Cholesterol depletion attenuates tonic release but increases the ambient level of glutamate in rat brain synaptosomes. Neurochem Int. 56, 466–478 (2010b)

    Article  Google Scholar 

  • Borisova, T.: Cholesterol and presynaptic glutamate transport in the brain. Springer, New York (2013)

  • Borisova, T.: The neurotoxic effects of heavy metals: Alterations in acidification of synaptic vesicles and glutamate transport in brain nerve terminals. In: Horizons in Neuroscience Research. 14, pp. 89-112 (2014)

  • Borisova, T., Nazarova, A., Dekaliuk, M., Krisanova, N., Pozdnyakova, N., Borysov, A., Sivko, R., Demchenko, A.P.: Neuromodulatory properties of fluorescent carbon dots: effect on exocytotic release, uptake and ambient level of glutamate and GABA in brain nerve terminals. Int. J. Biochem. Cell Biol. 59, 203–215 (2015)

    Article  Google Scholar 

  • Borisova, T.: Permanent dynamic transporter-mediated turnover of glutamate across the plasma membrane of presynaptic nerve terminals: arguments in favor and against. Rev Neurosci. 27, 71–81 (2016)

    Google Scholar 

  • Borisova, T., Borysov, A.: Putative duality of presynaptic events. Rev. Neurosci. 27, 377–383 (2016)

    Google Scholar 

  • Borisova, T., Borysov, A., Pastukhov, A., Krisanova, N.: Dynamic gradient of glutamate across the membrane: glutamate/aspartate-induced changes in the ambient level of L-[14C]glutamate and D-[3H]aspartate in rat brain nerve terminals. Cell Mol. Neurobiol. 36, 1229–1240 (2016)

    Article  Google Scholar 

  • Bourdon, J.A., Saber, A.T., Jacobsen, N.R., Jensen, K.A., Madsen, A.M., Lamson, J.S., Wallin, H., Møller, P., Loft, S., Yauk, C.L., Vogel, U.B.: Carbon black nanoparticle instillation induces sustained inflammation and genotoxicity in mouse lung and liver. Part Fibre Toxicol. 2, 5 (2012)

  • Cao, L., Wang, X., Meziani, M.J., Lu, F., Wang, H., Luo, P.G., et al.: Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 129, 11318–11319 (2007)

    Article  Google Scholar 

  • Chandra, S., Pathan, S.H., Mitra, S., Modha, B.H., Goswami, A., Pramanik, P.: Tuning of photoluminescence on different surface functionalized carbon quantum dots. RSC Adv. 2, 3602–3606 (2012)

    Article  Google Scholar 

  • Cotman, C.W.: Isolation of synaptosomal and synaptic plasma membrane fractions. Meth. Enzymol. 31, 445–452 (1974)

    Article  Google Scholar 

  • Danbolt, N.C.: Glutamate uptake. Prog Neurobiol. 65(1), 1–105 (2001)

    Article  Google Scholar 

  • Darquenne, C., Prisk, G.: Deposition of inhaled particles in the human lung is more peripheral in lunar than in normal gravity. Eur. J. Appl. Physiol. 103, 687–695 (2008)

    Article  Google Scholar 

  • Dorcena, C.J., Olesik, K.M., Wetta, O.G., Winter, J.O., Lowrie, W.G.: Characterization and toxicity of carbon dot-poly(lactic-co-glycolic acid) nanocomposite for biomedical imaging. NanoLIFE 3, 340002 (2013). doi:10.1142/S1793984413400023

  • Duley, W.W., Grishko, V.I.: Evolution of carbon dust in aromatic infrared emission sources: formation of nanodiamonds. Astrophys. J. 554, L209–L212 (2001)

    Article  Google Scholar 

  • Esteves da Silva, J.C.G., Gonçalves, H.M.R.: Analytical and bioanalytical applications of carbon dots. Trends Anal. Chem. 30, 327–336 (2011)

    Article  Google Scholar 

  • Fubini, B., Fenoglio, I.: Toxic potential of mineral dusts. Elements 3, 407–414 (2007)

    Article  Google Scholar 

  • Garai, J., Haggerty, S.E., Rekhi, S., Chance, M.: Infrared absorption investigations confirm the extraterrestrial origin of carbonado diamonds. Astrophys. J. 653, L153—L156 (2006)

  • Genc, S., Zadeoglulari, Z., Fuss, S.H., Genc, K.: The adverse effects of air pollution on the nervous system, p 782462 (2012). doi:10.1155/2012/782462

  • Grewer, C., Gameiro, A., Zhang, Z., Tao, Z., Braams, S., Rauen, T.: Glutamate forward and reverse transport: From molecular mechanism to transporter-mediated release after ischemia. IUBMB Life 60(9), 609–619 (2008)

    Article  Google Scholar 

  • Guillois, O., Ledoux, G., Reynaud, C.: Diamond infrared emission bands in circumstellar media. Astrophys. J. 521, L133–L36 (2008)

    Article  Google Scholar 

  • Jones, A.P., d’Hendecourt, L.B., Sheu, S.-Y., Chang, H.-C., Cheng, C.-L., Hill, H.G.M.: Surface C-H stretching features on meteoritic nanodiamonds. Astron. Astrophys. 416, 235–241 (2004)

    Article  Google Scholar 

  • Hsu, P.C., Shih, Z.Y., Lee, C.H., Chang, H.T.: Synthesis and analytical applications of photoluminescent carbon nanodots. Green Chem. 14, 917–920 (2012)

    Article  Google Scholar 

  • Kao, Y.Y., Cheng, T.J., Yang, D.M., Wang, C.T., Chiung, Y.M., Liu, P.S.: Demonstration of an Olfactory Bulb–Brain Translocation Pathway for ZnO Nanoparticles in Rodent Cells In Vitro and In Vivo. J. Mol. Neurosci. 48, 464–471 (2012)

    Article  Google Scholar 

  • Kreyling, W.G., Semmler-Behnke, M., Takenaka, S., Moller, W.: Differences in the Biokinetics of Inhaled Nano- versus Micrometer-Sized Particles. Acc Chem Res (2012). doi:10.1021/ar300043r

  • Krisanova, N., Kasatkina, L., Sivko, R., Borysov, A., Nazarova, A., Slenzka, K., Borisova, T.: Neurotoxic potential of lunar and martian dust: influence on Em, proton gradient, active transport, and binding of glutamate in rat brain nerve terminals. Astrobiology 13, 679–692 (2013)

    Article  Google Scholar 

  • Lam, C.W., James, J.T., Latch, J.N., Hamilton Jr., R.F., Holian, A.: Pulmonarytoxicity ofsimulatedlunar and Martiandusts in mice: II. Biomarkers of acuteresponses after intratracheal instillation. InhalToxicol 14, 917–928 (2002a)

    Google Scholar 

  • Lam, C.W., James, J.T., McCluskey, R., Cowper, S., Balis, J., Muro-Cacho, C.: Pulmonarytoxicity of simulated lunar and Martian dusts in mice: I. Histopathology 7 and 90 days after intratracheal instillation. Inhal Toxicol. 14, 901–916 (2002b)

    Article  Google Scholar 

  • Larson, E., Howlett, B., Jagendorf, A.: Artificial reductant enhancement of the Lowry method for protein determination. Anal. Biochem. 155, 243–248 (1986)

    Article  Google Scholar 

  • Latch, J.N., Hamilton Jr., R.F., Holian, A., James, J.T., Lam, C.W.: Toxicity of lunar and martiandustsimulants to alveolarmacrophagesisolated from humanvolunteers. Inhal Toxicol. 20, 157–165 (2008)

    Article  Google Scholar 

  • Lewis, R.S., Ming, T., Wacker, J.F., Anders, E., Steel, E.: Interstellar diamonds in meteorites. Nature 326, 160–162 (1987)

    Article  Google Scholar 

  • Lewis, R.S., Anders, E., Draine, B.T.: Properties, detectability and origin of interstellar diamonds in meteorites. Nature 339, 117–121 (1989)

    Article  Google Scholar 

  • Li, H., Kang, Z., Liu, Y., Lee, S.-T.: Carbon nanodots: synthesis, properties and applications. J. Mater. Chem. 22, 24230–24253 (2012)

    Article  Google Scholar 

  • Lin, Y., El Goresy, A., Hu, S., Zhang, J., Gillet, P., Xu, Y., Hao, J., Miyahara, M., Ouyang, Z., Ohtani, E., Xu, L., Yang, W., Feng, L., Zhao, X., Yang, J., Ozawa, S.: NanoSIMS analysis of organic carbon from the Tissint Martian meteorite: Evidence for the past existence of subsurface organic-bearing fluids on Mars. Meteorit. Planet Sci. 49, 2201–2218 (2014)

    Article  Google Scholar 

  • Linnarsson, D., Carpenter, J., Fubini, B., Gerde, P., Karlsson, L.L., Loftus, D.J., Prisk, G.K., Staufer, U., Tranfield E.M., van Westrenen, W.: Toxicity of lunar dust. Planet. Space Sci. (2012). doi:10.1016/j.pss.2012.05.023

  • Luo, P.G., Sahu, S., Yang, S.-T., Sonkar, S.K., Wang, J., Wang, H., et al.: Carbon “quantum” dots for optical bioimaging. J. Mater. Chem. 1, 2116–2127 (2013)

    Article  Google Scholar 

  • Maher, B.A., Ahmed, I.A.M., Karloukovski, V., MacLaren, D.A., Foulds, P.G., et al.: Magnetite pollution nanoparticles in the human brain PNAS. 113, 10797-10801 (2016)

  • Mikawa, M., Kato, H., Okumura, M., Narazaki, M., Kanazawa, Y., Miwa, N., Shinohara, H.: Paramagnetic water-solublemetallofullerenes having the highestrelaxivity for MRI contrast agents. Bioconjug. Chem. 12, 510–514 (2001)

    Article  Google Scholar 

  • Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W., Cox, C.: Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 16, 437–445 (2004)

    Article  Google Scholar 

  • Orel, V.E., Shevchenko, A.D., Bogatyreva, G.P., Leshchenko, O.V., Romanov, A.V., Rykhal’s’kii, O.Yu, Dzyatkovskaya, I.I., Nikolov, N.A., Dzyatkovskaya, N.N., Shchepotin, I.B.: Magnetic characteristics and anticancer activity of a nanocomplex consisting of detonation nanodiamond and doxorubicin. J. Superhard. Mater. 34, 179–185 (2012)

    Article  Google Scholar 

  • Peterson, J.B., Prisk, G.K., Darquenne, C.: Aerosol deposition in the human lung periphery is increased by reduced-density gas breathing. J. Aerosol Med. Pulm. Drug Del. 21, 159–168 (2008)

    Article  Google Scholar 

  • Pizzarello, S., Shock, E.: The organic composition of carbonaceous meteorites: the evolutionary story ahead of biochemistry. Cold Spring Harb. Perspect. Biol. 2, a002105 (2010). doi:10.1101/cshperspect.a002105

  • Pozdnyakova, N., Dudarenko, M., Yatsenko, L., Himmelreich, N., Krupko, O., Borisova, T.: Perinatal hypoxia: Different effects of the inhibitors of GABA transporters GAT-1 and GAT-3 on the initial velocity of [3H]GABA uptake by cortical, hippocampal and thalamic nerve terminals. Croat Med. J. 55, 250–258 (2014)

    Article  Google Scholar 

  • Pozdnyakova, N., Pastukhov, A., Dudarenko, M., Galkin, M., Borysov, A., Borisova, T.: Neuroactivity of detonation nanodiamonds: dose-dependent changes in transporter-mediated uptake and ambient level of excitatory/inhibitory neurotransmitters in brain nerve terminals. J. Nanobiotechnol. 14, 25 (2016)

  • Qingnuan, L., Yan, X., Xiaodong, Z., Ruili, L., Quiqui, D., Xiaoguang, S., Shaoliang, C., Wenxin, L.: Preparation of (99m)Tc-C(60)(OH)(x) and its biodistribution studies. Nucl. Med. Biol. 29, 707–710 (2002)

    Article  Google Scholar 

  • Rehders, M., Grosshäuser, B.B., Smarandache, A., Sadhukhan, A., Mirastschijski, U., Kempf, J., Dünne, M., Slenzka, K., Brix, K.: Effects of lunar and mars dust simulants on HaCaT keratinocytes and CHO-K1 fibroblasts. Adv. Space Res. 47, 1200–1213 (2011)

    Article  Google Scholar 

  • Rosenfeld, E.V., Korolev, A.V., Zakharov, A.V.: Lunar nanodust: Is it a borderland between powder and gas Adv. Space Res. 58, 560–563 (2016)

    Article  Google Scholar 

  • Saslaw, W.C., Gaustad, J.E.: Interstellar dust and diamonds. Nature 221, 160–162 (1969)

    Article  Google Scholar 

  • Südhof, T.C.: The synaptic vesicle cycle. Annu Rev Neurosci 27, 509–547 (2004)

    Article  Google Scholar 

  • Swart, P.K., Grady, M.M., Pillinger, C.T., Lewis, R.S., Anders, E.: Interstellar carbon in meteorites. Science 220, 406–410 (1983)

    Article  Google Scholar 

  • Takeda, K., Suzuki, K.I., Ishihara, A., Kubo-Irie, M., Fujimoto, R., Tabata, M., Oshio, S., Nihei, Y., Ihara, T., Sugamata, M.: Nanoparticles Transferred from Pregnant Mice to TheirOffspring Can Damage the Genital and Cranial Nerve Systems. J. Health Sci. 55, 95–102 (2009)

    Article  Google Scholar 

  • Tao, H., Yang, K., Ma, Z., Wan, J., Zhang, Y., Kang, Z., et al.: In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small 8, 281–290 (2012)

    Article  Google Scholar 

  • Van Kerckhoven, C, Tielens, AGGM, Waelkens, C.: Nanodiamonds around HD 97048 and Elias 1. Astron. Astrophys. 384, 568–584 (2002)

  • Wang, H., Wang, J., Deng, X., Sun, H., Shi, Z., Gu, Z., Liu, Y., Zhao, Y.: Biodistribution of carbon single-wall carbon nanotubes in mice. J. Nanosci. Nanotech. 4, 1019–1024 (2004)

    Article  Google Scholar 

  • Wang, X., Qu, K., Xu, B., Ren, J., Qu, X.: Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents. J. Mater. Chem. 21, 2445–2450 (2011)

    Article  Google Scholar 

  • Zhou, J., Sheng, Z., Han, H., Zou, M., Li, C.: Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source. Mater Lett. 66, 222–224 (2012)

    Article  Google Scholar 

  • Zhai, X., Zhang, P., Liu, C., Bai, T., Li, W., Dai, L., et al.: Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chem. Commun. 48, 7955–7957 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by State Space Agency of Ukraine; by a grant in the frame of the Program on Scientific Space Research of NAS of Ukraine 2012-2016; and by Science and Technology Center in Ukraine (STCU) project #6055 “Neuromodulatory properties of Carbon dots”. We would like to thank Dr. Olga Leshchenko from the Bakul Institute for Superhard Materials NAS of Ukraine for providing nanodiamant preparations; our colleagues Prof. Alexander Demchenko and Maria Dekaliuk for carbon dots synthesis; Dr. Klaus Slenzka from Jacobs University in Bremen for providing MD simulant; and Dr. Richard Boyle, Ames Research Center, NASA for support of this research direction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Borisova.

Ethics declarations

Authors’ Contributions

AP, MD, AB, AN isolated synaptosomes and performed L-[14C]glutamate release experiments; AP, AB and NK carried out L-[14C]glutamate uptake experiments; MD and NP carried out [3H]GABA uptake experiments. NP and TB participated in the design of the study and performed the statistical analysis. Paper was writing by TB. All authors read and approved the final manuscript.

Funding

This work was supported by State Space Agency of Ukraine; by a grant in the frame of the Program on Scientific Space Research of NAS of Ukraine 2012-2016; and by Science and Technology Center in Ukraine (STCU) project #6055 “Neuromodulatory properties of Carbon dots”.

Additional information

Competing interests

The authors declare no financial and non-financial competing interests exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pozdnyakova, N., Pastukhov, A., Dudarenko, M. et al. Enrichment of Inorganic Martian Dust Simulant with Carbon Component can Provoke Neurotoxicity. Microgravity Sci. Technol. 29, 133–144 (2017). https://doi.org/10.1007/s12217-016-9533-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-016-9533-6

Keywords

Navigation