Skip to main content
Log in

Numerical Simulations of Thermocapillary Flow of a Binary Mixture with the Soret Effect in a Shallow Annular Pool

  • ORIGINAL ARTICLE
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

In order to understand the characteristics of thermocapillary flow of a toluene/n-hexane mixture with the Soret effect in a shallow annular pool, a series of three-dimensional numerical simulations were carried out. The shallow annular pool was heated from the outer cylinder and cooled at the inner cylinder. The initial toluene concentration in the toluene/n-hexane mixture varied from 0 to 0.4467. Results indicate that the flow undergoes two transitions from the axisymmetric steady flow to the hydrothermal waves, and then to chaos with the increase of the thermocapillary Reynolds number. The critical thermocapillary Reynolds number for the incipience of the oscillatory flow decreases with the increase of the initial solute concentration. When the thermocapillary flow transits to a three-dimensional oscillatory flow, a concentration fluctuation is observed on the free surface, which is similar to the hydrothermal waves. However, compared with that of the temperature, the dimensionless fluctuation amplitude of the concentration is relatively weak. Furthermore, the fundamental oscillation frequency increases linearly with the initial solute concentration, but the wave number of the hydrothermal waves is almost unchangeable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alam, M.S., Rahman, M.M., Samad, M.A.: Dufour and Soret effects on unsteady MHD free convection and mass transfer flow past a vertical porous plate in a porous medium. Nonlinear Anal.-Model. 11, 217–226 (2006)

    MATH  Google Scholar 

  • Alloui, I., Benmoussa, H., Vasseur, P.: Soret and thermosolutal effects on natural flow in a shallow cavity filled with a binary mixture. Int. J. Heat Fluid Flow 31, 191–200 (2010)

    Article  Google Scholar 

  • Benz, S., Schwabe, D.: The three-dimensional stationary instability in dynamic thermocapillary shallow cavities. Exp. Fluids 31, 409–416 (2001)

    Article  Google Scholar 

  • Burguete, J., Mukolobwiez, N., Daviaud, F., Garnier, N., Chiffaudel, A.: Buoyant-thermocapillary instabilities in extended liquid layers subjected to a horizontal temperature gradient. Phys. Fluids 13, 2773–2787 (2001)

    Article  MATH  Google Scholar 

  • Charrier-Mojtabi, M.C., Elhajjar, B., Mojtabi, A.: Analytical and numerical stability analysis of Soret-driven convection in a horizontal porous layer. Phys. Fluids 19, 124104 (2007)

    Article  MATH  Google Scholar 

  • Chen, Z.W., Li, Y., Zhan, J.M.: Double-diffusive Marangoni convection in a rectangular cavity: Onset of convection. Phys. Fluids 22, 034106 (2010)

    Article  MATH  Google Scholar 

  • De Groot, S.R., Mazur, P.: Non-equilibrium thermodynamics. Dover Publications (1984)

  • Ecenarro, O., Madariaga, J.A., Navarro, J., Santamaria, C.M., Carrion, J.A., Saviron, J.M.: Direction of separation and dependence of feed concentration in liquid thermogravitational columns. Sep. Sci. Technol. 26, 1065–1076 (1991)

    Article  Google Scholar 

  • Er-Raki, M., Hasnaoui, M., Amahmid, A., Mamou, M.: Soret effect on the boundary layer flow regime in a vertical porous enclosure subject to horizontal heat and mass fluxes. Int. J. Heat Mass Transf. 49, 3111–3120 (2006)

    Article  MATH  Google Scholar 

  • Ghai, R.K., Dullien, F.A.L.: Diffusivities and viscosities of some binary liquid nonelectrolytes at 25 Degrees. J. Phys. Chem. 78, 2283–2291 (1974)

    Article  Google Scholar 

  • Hollinger, St., Lucke, M.: Influence of the Dufour effect on flow in binary gas mixtures. Phys. Rev. E 52, 642 (1995)

    Article  Google Scholar 

  • Labrosse, G.: Free convection of binary liquid with variable Soret coefficient in thermogravitational column: The steady parallel base states. Phys. Fluids 15, 2694–2727 (2003)

    Article  MATH  Google Scholar 

  • Larre, J.P., Platten, J.K., Chavepeyer, G.: Soret effects in ternary systems heated from below. Int. J. Heat Mass Transf. 40, 545–555 (1997)

    Article  MATH  Google Scholar 

  • Li, Y.R., Peng, L., Akiyama, Y., Imaishi, N.: Three-dimensional numerical simulation of thermocapillary flow of moderate Prandtl number fluid in annular pool. J. Cryst. Growth 259, 374–387 (2003)

    Article  Google Scholar 

  • Li, Y.R., Ling, F., Peng, L., Tang, J.W.: Three-dimensional numerical simulation of thermocapillary flow in a shallow cylindrical pool. Heat Mass Transf. 45, 1335–1340 (2009)

    Article  Google Scholar 

  • Mahidjiba, A., Bennacer, R., Vasseur, P.: Flows in a fluid layer induced by the combined action of a shear stress and the Soret effect. Int. J. Heat Mass Transf. 49, 1403–1411 (2006)

    Article  MATH  Google Scholar 

  • Mansour, A., Amahmid, A., Hasnaoui, M., Bourich, M.: Multiplicity of solutions induced by thermosolutal convection in a square porous cavity heated from below and submitted to horizontal concentration gradient in the presence of Soret effect. Numer. Heat Transf. A-Appl. 49, 69–94 (2006)

    Article  Google Scholar 

  • Peng, L., Li, Y.R., Shi, W.Y., Imaishi, N.: Three-dimensional thermocapillary–buoyancy flow of silicone oil in a differentially heated annular pool. Int. J. Heat Mass Transf. 50, 872– 880 (2007)

    Article  MATH  Google Scholar 

  • Platten, J.K., Chavepeyer, G.: Oscillatory motion in Bénard cell due to the Soret effect. J. Fluid Mech. 60, 305–319 (1973)

    Article  MATH  Google Scholar 

  • Platten, J.K., Costesèque, P.: Charles Soret. A short biography- On the occasion of the hundredth anniversary of his death. Eur. Phys. J. E 15, 235–239 (2004)

    Article  Google Scholar 

  • Platten, J.K.: The Soret effect: a review of recent experimental results. J. Appl. Mech.-Trans. ASME 73, 5–15 (2006)

    Article  MATH  Google Scholar 

  • Pugin, V.A., Bagdasarov, N.: The Soret effect as a possible cause of Magma differentiation. Geochem. Int. 25, 57–65 (1988)

    Google Scholar 

  • Rahman, M.A., Saghir, M.Z.: Thermodiffusion or Soret effect: Historical review. Int. J. Heat Mass Transf. 73, 693–705 (2014)

    Article  Google Scholar 

  • Rosanne, R., Paszkuta, M., Tevissen, E., Adler, P.M.: Thermodiffusion in compact clays. J. Colloid Interface Sci, 267, 194–203 (2003)

    Article  Google Scholar 

  • Schwabe, D., Benz, S.: Thermocapillary flow instabilities in an annulus under microgravity - results of the experiment magia. Adv. Space Res. 29, 629–638 (2002)

    Article  Google Scholar 

  • Smith, M.K., Davis, S.H.: Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities. J. Fluid Mech. 132, 119–144 (1983)

    Article  MATH  Google Scholar 

  • Walker, D., DeLong, S.E.: Soret separation of mid-ocean ridge basalt magma. Contrib. Mineral. Petrol. 79, 231–240 (1982)

    Article  Google Scholar 

  • Wu, C.M., Li, Y.R., Ruan, D.F.: Aspect ratio and radius ratio dependence of flow pattern driven by differential rotation of a cylindrical pool and a disk on the free surface. Phys. Fluids 25, 084101 (2013a)

    Article  Google Scholar 

  • Wu, C.M., Li, Y.R.: Flow instability driven by the combined temperature gradient and counter rotation of crucible and crystal in a liquid-encapsulated Czochralski configuration. Int. J. Heat Mass Transf. 64, 808–816 (2013b)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (Grant No.51176209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Rong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, JJ., Zhang, L., Li, YR. et al. Numerical Simulations of Thermocapillary Flow of a Binary Mixture with the Soret Effect in a Shallow Annular Pool. Microgravity Sci. Technol. 28, 1–10 (2016). https://doi.org/10.1007/s12217-015-9485-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-015-9485-2

Keywords

Navigation