Skip to main content
Log in

Chaotic Shape and Translational Dynamics of 2D Incompressible Bubbles under Forced Vibration in Microgravity

  • Original Research
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Nonlinear shape oscillations of 2D incompressible bubbles in an inviscid fluid, subject to a forced vibration in microgravity, have been studied numerically. Forced vibration induces an oscillatory translational motion as well as shape oscillations. It is shown that for large enough oscillation amplitudes, the coupling between the shape oscillation and the translational motion of a bubble results in a chaotic behaviour. For two-bubble systems, the bubbles may attract each other. The attraction force is stronger at higher Bond numbers. Higher Bond numbers also yield larger bubble deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akhatov, I.S., Konovalova, S.I.: Regular and chaotic dynamics of a spherical bubble. J. Appl. Math. Mech. 69, 575–584 (2005)

    Article  MathSciNet  Google Scholar 

  • Alexander, I.: Impulse, vibrations and random disturbances: concequences for convective diffusive transport and fluid interfaces in low gravity experiments. AIAA 96–2073, presented at 27th Fluid Dynamics Conference, New Orleans, LA, 17–20 June (1996)

  • Azuma, H., Yoshihara, S.: Three-dimensional large-amplitude drop oscillations: experiments and theoretical analysis. J. Fluid Mech. 393, 309–332 (1999)

    Article  MATH  Google Scholar 

  • Barbat, T. Ashgriz, N., Liu, C.: Dynamics of two interacting bubbles in an acoustic field. J. Fluid Mech. 389, 137–168 (1999)

    Article  MATH  Google Scholar 

  • Basaran, O.A.: Nonlinear oscillations of viscous liquid drops. J. Fluid Mech. 241, 169–198 (1992)

    Article  MATH  Google Scholar 

  • Benjamin, T.B., Ellis, A.T.: Self-propulsion of asymmetrically vibrating bubbles. J. Fluid Mech. 212, 65–80 (1990)

    Article  MATH  Google Scholar 

  • Bjerknes, V.: Fields of Force. Columbia University Press (1906)

  • Bussmann, M., Mostaghimi, J., Chandra, S.: On a three dimensional volume tracking model of droplet impact. Phys. Fluids 11, 1408–1417 (1999)

    Article  Google Scholar 

  • Cummins, S., Francois, M., Kothe, D.: Estimating curvature from volume fractions. Comput. Struct. 83, 425–434 (2005)

    Article  Google Scholar 

  • Doinikov, A.A.: Translational motion of a bubble undergoing shape oscillations. J. Fluid Mech. 501, 1–24 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Eller, A., Crum, L.: Instability of the motion of a pulsating bubble in a sound field. J. Acoust. Soc. Am. 47, 762–767 (1970)

    Article  Google Scholar 

  • Farris, S.C., Bugg, D.J., Gabriel, K.S.: The motion of bubbles in a sinusoidally oscillating liquid in microgravity. Microgravity Sci. Technol. XV/3, 28–35 (2004)

    Article  Google Scholar 

  • Feng, Z.C., Su, Y.H.: Numerical simulations of the translational and shape oscillations of a liquid drop in an acoustic field. Phys. Fluids 9(3), 519–529 (1997)

    Article  Google Scholar 

  • Francois, M., Cummins, S., Dendy, E., Kothe, D., Sicilian, J., Williams, M.: A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework. J. Comput. Phys. 213, 141–173 (2006)

    Article  MATH  Google Scholar 

  • Friesen, T.J., Takahira, H., Allegro, L., Yasuda, Y., Kawaji, M.: Numerical simulations of bubble motion in a vibrated cell under microgravity using level set and VOF algorithms. Ann. N.Y. Acad. Sci. 974, 288–305 (2002)

    Article  Google Scholar 

  • Golpaygan, A., Ashgriz, N.: Multiphase flow model to study channel flow dynamics of PEM fuel cell: deformation and detachment of water droplets. Int. J. Comput. Fluid Dyn. 22, 85–95 (2008)

    Article  MATH  Google Scholar 

  • Golpaygan, A., Hsu, N., Ahgriz, N.: Numerical investigation of impact and penetration of a droplet onto a porous substrate. J. Porous Media 11(4), 323–341 (2008)

    Article  Google Scholar 

  • Ishikawa, M., Nakamura, T., Yoda, S., Samejima, H., Goshozono, T.: Responsive motion of bubbles to periodic g-jitter. Microgravity Sci. Technol. VII/2, 164–168. (1994)

    Google Scholar 

  • Kang, M., Fedkiw, R.P., Liu, X.: A boundary condition capturing method for multiphase incompressible flow. J. Sci. Comput. 15(3), 323–360 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Lamb, H.: Hydrodynamics. Cambridge University Press (1930)

  • Lauterborn, W., Kurz, T.: Physics of bubble oscillations. Rep. Prog. Phys. 73, 1–88 (2010)

    Article  Google Scholar 

  • Lundgren, T.S., Mansour, N.N.: Oscillation of drops in zero gravity with weak viscous effects. J. Fluid Mech. 194, 479–510 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Miller, C.A., Scriven, L.E.: The oscillations of a fluid droplet immersed in another fluid. J. Fluid Mech. 32, 417–435 (1968)

    Article  MATH  Google Scholar 

  • Monti, R.: Gravity jitters: effect on typical fluid science experiments, in low gravity fluid dynamics and transport phenomena. AIAA Progr. Aeronaut. Astronaut. 130, 275–307 (1990)

    Google Scholar 

  • Patzek, T.W., Benner, R.E., Bassaran, O.A., Scriven, L.E.: Nonlinear oscillations of inviscid free drops. J. Comput. Phys. 97, 489–515 (1991)

    Article  MATH  Google Scholar 

  • Pelekasis, N.A., Tsamopoulos, J.A.: Bjerknes forces between two bubbles. Part 2. Response to an oscillatory pressure field. J. Fluid Mech. 254, 500–527 (1993)

    Google Scholar 

  • Press, W.H.: Numerical recipes in FORTRAN: the art of scientific computing. Cambridge University Press (1992)

  • Rayleigh, L.: On the capillary phenomena of jets. Proc. R. Soc. Lond. 29, 71–97 (1879)

    Article  Google Scholar 

  • Trinh, E., Wang, T.G.: Large-amplitude free and driven drop-shape oscillations: experimental observations. J. Fluid Mech. 122, 315–338 (1982)

    Article  Google Scholar 

  • Trinh, E.H., Holt, R.G., Thiessen, D.B.: The dynamics of ultrasonically levitated drops in an electric field. Phys. Fluids 8(1), 43–61 (1996)

    Article  Google Scholar 

  • Trinh, E.H., Thiessen, D.B., Holt, R.G.: Driven and freely decaying nonlinear shape oscillations of drops and bubbles immersed in a liquid: experimental results. J. Fluid Mech. 364, 253–272 (1998)

    Article  MATH  Google Scholar 

  • Tryggvason, B.V.: Acceleration levels and operation of the microgravity vibration isolation mount (MIM) on the shuttle and the MIR space station. AIAA 99–0578, 37th AIAA Aerospace Sciences Meeting and Exhibition, Jan. 11–14, Reno, Nevada (1999)

  • Watanabe, T., Kukita, Y.: Translational and radial motions of a bubble in an acoustic standing wave field. Phys. Fluids A 5, 2682–2688 (1993)

    Article  Google Scholar 

  • Yoshikawa, H.N., Zoueshtiagh, F., Caps, H., Kurowski, P., Petitjeans, P.: Bubble splitting on oscillatory flows on ground and in reduced gravity. Eur. Phys. J. E. 31, 191–199 (2010)

    Article  Google Scholar 

  • Youngs, D.L.: An Interface Tracking Method for a 3D Eulerian Hydrodynamics Code, Technical Report 44/92/35, AWRE (1984)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser Ashgriz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Movassat, M., Ashgriz, N. & Bussmann, M. Chaotic Shape and Translational Dynamics of 2D Incompressible Bubbles under Forced Vibration in Microgravity. Microgravity Sci. Technol. 24, 39–51 (2012). https://doi.org/10.1007/s12217-011-9289-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-011-9289-y

Keywords

Navigation