Skip to main content
Log in

Magnetic Levitation of MC3T3 Osteoblast Cells as a Ground-Based Simulation of Microgravity

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Diamagnetic samples placed in a strong magnetic field and a magnetic field gradient experience a magnetic force. Stable magnetic levitation occurs when the magnetic force exactly counter balances the gravitational force. Under this condition, a diamagnetic sample is in a simulated microgravity environment. The purpose of this study is to explore if MC3T3-E1 osteoblastic cells can be grown in magnetically simulated hypo-g and hyper-g environments and determine if gene expression is differentially expressed under these conditions. The murine calvarial osteoblastic cell line, MC3T3-E1, grown on Cytodex-3 beads, were subjected to a net gravitational force of 0, 1 and 2 g in a 17 T superconducting magnet for 2 days. Microarray analysis of these cells indicated that gravitational stress leads to up and down regulation of hundreds of genes. The methodology of sustaining long-term magnetic levitation of biological systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Beaugnon, E., Tournier, R.: Levitation of water and organic substances in high static magnetic fields. J. Phys. III. 1, 1423–1428 (1991)

    Article  Google Scholar 

  • Berry, M.V., Geim, A.K.: Of flying frogs and levitrons. Eur. J. Phys. 18, 307–313 (1997)

    Article  MathSciNet  Google Scholar 

  • Brooks, J.S., Reavis, J.A., Medwood, R.A., Stalcup, T.F., Meisel, M.W.: New opportunities in science, materials, and biological systems in the low-gravity (magnetic levitation) environment. J. Appl. Phys. 87, 6194–6199 (2000)

    Article  Google Scholar 

  • Carmeleit, G., Nys, G., Bouillon, R.: Microgravity reduces the differentiation of human osteoblastic MG-63 cells. J. Bone Miner. Res. 12(5), 786–794 (1997)

    Article  Google Scholar 

  • Carmeliet, G., Nys, G., Stockmans, I., Bouillon, R.: Gene expression related to the differentiation of osteoblastic cells is altered by microgravity. Bone 22, 139S–143S (1998)

    Article  Google Scholar 

  • Chomczynski, P., Sacchi, N.: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987)

    Article  Google Scholar 

  • Coleman, C.G., Gonzalez-Villalobos, R.A., Allen, P.A., Johanson, K., Guevorkian, K., Valles, J.M., Hammond, T.G.: Diamagnetic levitation changes, growth, cell cycle, and gene expresssion of saccharomyces cerevisiae. Biotech. Bioeng. 98(4), 854–863 (2007)

    Article  Google Scholar 

  • Fitzgerald, J., Hughes-Fulford, M.: Mechanically induced c-fos expression is mediated by cAMP in MC3T3-E1 osteoblasts. FASEB J. 13, 553–557 (1999)

    Google Scholar 

  • Guevorkian, K., Valles, J.M.: Swimming paramecium in magnetically simulated enhanced, reduced, and inverted gravity environments. Appl. Phys. Lett. 84(24), 4863–4865 (2004)

    Article  Google Scholar 

  • Hammond, T.G., Lewis, F.C., Goodwin, T.J., Linnehan, R.M., Wolf, D.A., Hire, K.P., Campbell, W.C., Benes, E., O’Reilly, K.C., Globus, R.K., Kaysen, J.H.: Gene expression in space. Nat. Med. 5, 359–360 (1999)

    Article  Google Scholar 

  • Harris, S.A., Zhang, M., Kidder, L.S., Evans, G.L., Spelsberg, T.C., Turner, R.T.: Effects of orbital spaceflight on human osteoblastic cell physiology and gene expression. Bone 26, 325–331 (2000)

    Article  Google Scholar 

  • Hatton, J.P., Poodran, M., Li, C.-F., Luzzio, C., Hughes-Fulford, M.: A short pulse of mechanical force induces gene expression and growth in MC3T3-E1 osteoblasts via an ERK 1/2 pathway. J. Bone Miner. Res. 18(1), 58–66 (2003)

    Article  Google Scholar 

  • Irizarry, R.A., Bolstad, B.M., Collin, F., Cope, L.M., Hobbs, B., Speed, T.P.: Summaries of affymetrix genechip probe level data. Nucleic Acids Res. 31, e15 (2003)

    Article  Google Scholar 

  • Jacobs, C.R., Yellowley, C.E., Davis, B.R., Zhou, Z., Cimbala, J.M., Donahue, H.J.: Differential effects of steady versus oscillating flow on bone cells. J. Biomech. 31, 969–976 (1998)

    Article  Google Scholar 

  • Kaysen, J.H., Campbell, W.C., Majewski, R.R., Goda, F.O., Navar, G.L., Lewis, F.C., Goodwin, T.J., Hammond, T.G.: Select de novo gene and protein expression during renal epithelial cell culture in rotating wall vessels is shear stress dependent. J. Membr. Biol. 168, 77–89 (1999)

    Article  Google Scholar 

  • Pavalko, F.M., Chen, N.X., Turner, C.H., Burr, D.B., Atkinson, S., Hsieh, Y.-F., Qiu, J., Duncan, R.L.: Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions. Am. J. Physiol. 275, C1591–C1601 (1998)

    Google Scholar 

  • Sarkar, D., Nagaya, T., Koga, K., Nomura, Y., Gruener, R., Seo, H.: Culture in vector-averaged gravity under clinostat rotation results in apoptosis of osteoblastic ROS 17/2.8 cells. J. Bone Miner. Res. 15(3), 489–498 (2000)

    Article  Google Scholar 

  • Sudo, H., Kodama, H.A., Amagi, Y., Yamamoto, S., Kasai, S.: In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol. 96(1), 191–198 (1983)

    Article  Google Scholar 

  • Ueno, S., Iwasaka, M.: Properties of diamagnetic fluid in high gradient magnetic fields. J. Appl. Phys. 75(10), 7177–7179 (1994)

    Article  Google Scholar 

  • Valles, J.M., Lin, K., Denegre, J.M., Mowry, K.L.: Stable magnetic field gradient levitation of xenopus laevis: toward low-gravity simulation. Biophys. J. 73, 1130–1133 (1997)

    Article  Google Scholar 

  • Valles, J.M., Wasserman, S.R.R.M., Schweidenback, C., Edwardson, J., Denegre, J.M., Mowry, K.L.: Processes that occur before second cleavage determine third cleavage orientation in xenopus. Exp. Cell Res. 274(1), 112–118 (2002)

    Article  Google Scholar 

  • Yuge, L., Hide, I., Kumagai, T., Kumei, Y., Takeda, S., Kanno, M., Sugiyama, M., Kataoka, K.: Cell differentiation and p38MARK cascade are inhibited in human osteoblasts cultured in a three-dimensional clinostat. In Vitro Cell. Dev. Biol.-Animal. 39, 89–97 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce E. Hammer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammer, B.E., Kidder, L.S., Williams, P.C. et al. Magnetic Levitation of MC3T3 Osteoblast Cells as a Ground-Based Simulation of Microgravity. Microgravity Sci. Technol. 21, 311 (2009). https://doi.org/10.1007/s12217-008-9092-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12217-008-9092-6

Keywords

Navigation