Skip to main content
Log in

MHD viscoelastic fluid flow through porous medium over a stretching sheet in the presence of non-uniform heat source/sink

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

The boundary layer flow, heat and mass transfer of an electrically conducting viscoelastic fluid over a stretching sheet embedded in a porous medium has been studied. The effect of transverse magnetic field, non-uniform heat source and chemical reaction on the flow has been analyzed. The Darcy linear model has been applied to account for the permeability of the porous medium. The method of solution involves similarity transformation. The confluent hypergeometric function (Kummer’s function) has been applied to solve the governing equations. Two aspects of heat equation namely, (1) prescribed surface ure and (2) prescribed wall heat flux are considered. The study reveals that the loss of momentum transfer in the main direction of flow is compensated by increasing in transverse direction vis-à-vis the corresponding velocity components due to magnetic force density. The application of magnetic field of higher density produces low solutal concentration and a hike in surface temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\(A,d,a_0 ,b_0 \) :

Constants

u :

Non-dimensional velocity in x-direction

v :

Non-dimensional velocity in y-direction

\(k_0 \) :

Co-efficient of viscoelasticity

\(\kappa \) :

Thermal conductivity

Rc :

Visco-elastic parameter

Kc :

Chemical reaction parameter

Sc :

Schmidt number

M :

Magnetic field parameter

T :

Non-dimensional temperature

\(T_w \) :

Temperature of the wall

\(T_\infty \) :

Ambient temperature

\(\theta \) :

Temperature profile in PST case

\(\psi \) :

Temperature profile in PHF case

\(\phi \) :

Concentration profile

b :

Stretching rate

Ec :

Eckert number

\( \Pr \) :

Prandtl number

\(A^{*}\) :

Space dependent parameters

\(B^{*}\) :

Temperature dependent parameters

\(c_p \) :

Specific heat at constant pressure

\(\mu \) :

Viscosity

\(q_w \) :

Heat flux

\({q}'''\) :

Space and temperature dependent internal heat generation/absorption

l :

Characteristic length

\(\upsilon \) :

Kinematic viscosity

\(\rho \) :

Density

References

  1. Crane, L.J.: Flow past a stretching plate. Z. Angew. Math. Phys. 21(4), 645–647 (1970)

    Article  Google Scholar 

  2. Carragher, P., Crane, L.J.: Heat transfer on a continuous stretching sheet. Z. Angew. Math. Phys. 62, 564–565 (1982)

    Article  Google Scholar 

  3. Andersson, H.I., Dandapat, B.S.: Flow of a power-law fluid over a stretching sheet. Z. Angew. Math. Phys. 1, 339–347 (1991)

    Google Scholar 

  4. Wang, C.Y.: The three dimensional flow due to a stretching flat surface. Phys. Fluids 27, 1915–1917 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Pavlov, K.B.: Magnetohydrodynamic flow of an incompressible viscous fluid caused by deformation of a plane surface. Phys. Fluids 4, 146–147 (1974)

    Google Scholar 

  6. Chakrabarti, A., Gupta, A.S.: Hydromagnetic flow and heat transfer over a stretching sheet. Phys. Fluids 37, 73–78 (1979)

    MATH  Google Scholar 

  7. Andersson, H.I.: MHD flow of a viscoelastic fluid past a stretching surface. Acta Mech. 95(1), 227–230 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dirks, C.A., Gouverneur, M., McCullum, L., McGovern, C., Melsness, J., Saunders, S., Pop, I., Na, T.Y.: A note on MHD flow over a stretching permeable surface. Acta Mech. 25(3), 263–169 (1998)

    MathSciNet  Google Scholar 

  9. Bhattacharya, K., Layek, G.C.: Chemically reactive solute distribution in MHD boundary layer flow over a permeable stretching sheet with suction or blowing. Acta Mech. 197(12), 1527–1540 (2010)

    Google Scholar 

  10. Wang, C.Y.: Liquid film on an unsteady stretching sheet. Q. Appl. Math. 48(4), 601–610 (1990)

    Article  MATH  Google Scholar 

  11. Miklavcic, M., Wang, C.Y.: Viscous flow due to a shrinking sheet. Q. Appl. Math. 64(2), 283–290 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bhukta, D., Dash, G.C., Mishra, S.R.: Heat and mass transfer on MHD flow of a viscoelastic fluid through porous media over a shrinking sheet. Q. Appl. Math. (2014). doi:10.1155/2014/572162

    Google Scholar 

  13. Kandasamy, R., Khamis, A.B.: Effects of heat and mass transfer on nonlinear MHD boundary layer sheet in the presence of suction. Q. Appl. Math. 29(10), 1309–1317 (2008)

    MATH  Google Scholar 

  14. Fang, T., Zhang, J.: Closed-form exact solutions of MHD viscous flow over a shrinking sheet. Q. Appl. Math. 14(7), 2853–2857 (2009)

    MATH  Google Scholar 

  15. Tripathy, R.S., Dash, G.C., Mishra, S.R., Baag, S.: Chemical reaction effect on MHD free convective surface over a moving vertical plane through porous medium. Q. Appl. Math. 54(3), 673–679 (2015)

    Google Scholar 

  16. Fang, T., Zhang, J.: Thermal boundary layers over a shrinking sheet: an analytical solution. Acta Mech. 209(3), 325–343 (2010)

    Article  MATH  Google Scholar 

  17. Wang, C.Y.: Stagnation flow towards a shrinking sheet. Acta Mech. 43(5), 377–382 (2008)

    Google Scholar 

  18. Ishak, A., Lok, Y., Pop, I.: Stagnation-point flow over a shrinking sheet in a micropolar fluid. Chem. Eng. Commun. 197(11), 1417–1427 (2010)

    Article  Google Scholar 

  19. Bhattacharya, K., Layek, G.: effects of suction/blowing on steady boundary layer stagnation-point flow and heat transfer towards a shrinking sheet with thermal radiation. Chem. Eng. Commun. 54, 302–307 (2011)

    MATH  Google Scholar 

  20. Baag, S., Mishra, S.R., Dash, G.C., Acharya, M.R.: Numerical investigation on MHD micropolar fluid flow toward a stagnation point on a vertical surface with heat source and chemical reaction. Chem. Eng. Commun. (2014). doi:10.1016/j.jksues.2014.06.002

    Google Scholar 

  21. Vajravelu, K., Hadjinicolaou, A.: Heat transfer in a viscous fluid over a stretching sheet with viscous dissipation and internal heat generation. Chem. Eng. Commun. 20(3), 417–430 (1993)

    Google Scholar 

  22. Elbashbeshy, E.M.A., Bazid, M.A.A.: heat transfer in a porous medium over a stretching surface with internal heat generation and suction or injection. Appl. Math. Compution 158(3), 799–807 (2004)

    MathSciNet  MATH  Google Scholar 

  23. Bataller, R.C.: Effects of heat source/sink, radiation and work done by deformation on flow and heat transfer of a viscoelastic fluid over a stretching sheet. Chem. Eng. Commun. 53(2), 305–316 (2007)

    MATH  Google Scholar 

  24. Layek, G.C., Mukhopadhyay, S., Samad, S.A.: Heat and mass transfer analysis for boundary layer stagnation point flow towards a heated porous stretching sheet with heat absorption/generation and suction/blowing. Chem. Eng. Commun. 34(3), 347–356 (2007)

    Google Scholar 

  25. Chen, C.H.: Magneto-hydrodynamics mixed convection of a power-law fluid past a stretching surface in the presence of thermal radiation and internal heat generation/absorption. Chem. Eng. Commun. 44(6), 596–603 (2009)

    MATH  Google Scholar 

  26. Acharya, M., Singh, L.P., Dash, G.C.: Heat and mass transfer over an accelerated surface with heat source in presence of suction and blowing. Chem. Eng. Commun. 17, 189–211 (1999)

    Google Scholar 

  27. Abel, M.S., Sidheshwar, P.G., Nandeppanavar, M.M.: Heat transfer in a viscoelastic boundary layer flow over a stretching sheet with viscous dissipation and non-uniform heat source. Chem. Eng. Commun. 50, 960–966 (2007)

    MATH  Google Scholar 

  28. Rajagopal, K.R., Na, T.Y., Gupta, A.S.: A non-similar boundary layer on a stretching sheet in a non-Newtonian fluid with uniform free stream. Chem. Eng. Commun. 21(2), 189–200 (1987)

    MATH  Google Scholar 

  29. Abo-Eldahab, E.M., El Aziz, M.A.: Blowing/suction effect on hydromagnetic heat transfer by mixed convection from an inclined continuously stretching surface with internal heat generation/absorption. Int. J. Therm. Sci. 43, 709–719 (2004)

    Article  Google Scholar 

  30. Lorrian, P., Lorrian, F., Houle, S.: Magnetic-Fluid Dynamics, p. 85. Springer, Berlin (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S.R., Tripathy, R.S. & Dash, G.C. MHD viscoelastic fluid flow through porous medium over a stretching sheet in the presence of non-uniform heat source/sink. Rend. Circ. Mat. Palermo, II. Ser 67, 129–143 (2018). https://doi.org/10.1007/s12215-017-0300-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-017-0300-3

Keywords

Mathematics Subject Classification

Navigation