Skip to main content
Log in

Instantaneous wing kinematics tracking and force control of a high-frequency flapping wing insect MAV

  • Research Paper
  • Published:
Journal of Micro-Bio Robotics Aims and scope Submit manuscript

Abstract

The superior maneuverability of insect flight is enabled by rapid and significant changes in aerodynamic forces, a result of subtle and precise change of wing kinematics. The high sensitivity of aerodynamic force to wing kinematic change demands precise and instantaneous feedback control of the wing motion trajectory, especially in the presence of various parameter uncertainties and environmental disturbances. Current work on flapping wing robots was limited to open-loop averaged wing kinematics control. Here we present instantaneous closed-loop wing trajectory tracking of a DC motor direct driven wing-thorax system under resonant flapping. A dynamic model with parameter uncertainties and disturbances was developed and validated through system identification. For wing trajectory generation, we designed a Hopf oscillator based central pattern generator with smooth convergence. Using the linearized model while treating the nonlinearity as disturbance, we designed a proportional-integral-derivative (PID) controller and a linear quadratic regulator (LQR) for instantaneous wing trajectory tracking at 24 Hz; Using the original nonlinear model, we designed a nonlinear controller to achieve robust performance at over 30 Hz. The control algorithms were implemented and compared experimentally on a 7.5 g Flapping Wing Micro Air Vehicle (MAV). The experiments showed that the PID and nonlinear controls resulted in precise trajectory tracking; while LQR controller tracked with less precision but with smaller input effort. In addition, the nonlinear control algorithm achieved better tracking of wing trajectories with varying amplitude, bias, frequency, and split-cycles while adapting to the variations on wing morphological parameters such as wing geometry and stiffness. Furthermore, the lift force measurements of the nonlinear control results were compared with those of open-loop average wing kinematics control commonly adopted in current designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Dickinson MH, Lehmann FO, Sane SP (1999) Science 284(5422):1954

    Article  Google Scholar 

  2. Bergou AJ, Ristroph L, Guckenheimer J, Cohen I, Wang Z J (2010) Phys Rev Lett 104(14):148101

    Article  Google Scholar 

  3. Hedrick TL, Cheng B, Deng X (2009) Science 324(5924):252

    Article  Google Scholar 

  4. Wilson DM (1961) J Exp Biol 38(47):l

    Google Scholar 

  5. Cheng B, Deng X, Hedrick TL (2011) J Exp Biol 214(24):4092

    Article  Google Scholar 

  6. Hines L, Campolo D, Sitti M (2014) IEEE Trans Robot 30(1):220

    Article  Google Scholar 

  7. Baek SS, Ma KY, Fearing RS (2009) In: IEEE/RSJ international conference on intelligent robots and systems, 2009. IROS 2009. IEEE, pp 2854–2860

  8. Keennon M, Klingebiel K, Won H, Andriukov A (2012) In: AIAA aerospace sciences meeting

  9. De Croon G, Groen M, De Wagter C, Remes B, Ruijsink R, Van Oudheusden B (2012) Bioinspir Biomim 7(2):025003

    Article  Google Scholar 

  10. Lau G-K, Chin Y-W, Goh JT-W, Wood RJ (2014) Dipteraninsect-inspired thoracic mechanism with nonlinear stiffness to save inertial power of flapping-wing flight. IEEE Trans Robot 30(5):1187–1197

  11. Wood R J (2008) IEEE Trans Robot 24(2):341

    Article  Google Scholar 

  12. Arabagi V, Hines L, Sitti M (2012) Int J Robot Res 0278364911434368

  13. Ma KY, Chirarattananon P, Fuller SB, Wood RJ (2013) Science 340(6132):603

    Article  Google Scholar 

  14. Pérez-Arancibia NO, Whitney JP, Wood RJ (2013) IEEE/ASME Trans Mechatron 18(1):155

    Article  Google Scholar 

  15. Chirarattananon P, Pérez-Arancibia NO, Wood RJ (2012) In: American control conference (ACC), 2012. IEEE, pp 3831–3838

  16. Zhang J, Cheng B, Roll J A, Deng X, Yao B (2013) In: 2013 IEEE international conference on robotics and automation (ICRA), pp 4029–4034

  17. Azhar M, Campolo D, Lau G K, Hines L, Sitti M (2013) In: 2013 IEEE international conference on robotics and automation (ICRA). IEEE, pp 1397–1402

  18. Zhang J, Cheng B, Yao B, Deng X (2015) In: 2015 IEEE international conference on robotics and automation (ICRA). IEEE, pp 5852–5857

  19. Greenewalt C H (1960) Proc Am Philos Soc 605–611

  20. Bergou AJ, Xu S, Wang Z (2007) J Fluid Mech 591:321

    Article  Google Scholar 

  21. Khan Z, Steelman K, Agrawal S (2009) In: IEEE international conference on robotics and automation, 2009. ICRA’09. IEEE, pp 3651–3656

  22. Phan HV, Nguyen QV, Truong QT, Van Truong T, Park HC, Goo NS, Byun D, Kim MJ (2012) J Bionic Eng 9(4):391

    Article  Google Scholar 

  23. Finio BM, Pérez-Arancibia NO, Wood RJ (2011) In: 2011 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 1107–1114

  24. Whitney J, Wood R (2012) Bioinspir Biomim 7(3):036001

    Article  Google Scholar 

  25. Ellington C (1984) Philos Trans R Soc Lond B Biol Sci 305(1122):1

    Article  Google Scholar 

  26. Ljung L (1987) System identification: theory for the user, vol 198. PTR Prentice Hall Information and System Sciences Series

  27. Cheng B, Deng X (2011) IEEE Trans Robot 27(5):849

    Article  Google Scholar 

  28. Doman DB, Oppenheimer MW, Sigthorsson DO (2010) 48th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition 1024

  29. Goodwin GC, Graebe SF, Salgado ME (2001) Control system design, vol 240. Prentice Hall, New Jersey

    Google Scholar 

  30. Yao B, Jiang C (2010) In: 2010 11th IEEE international workshop on advanced motion control. IEEE, pp 815–829

  31. Hedrick TL (2008) Bioinspir Biomim 3(3):034001

    Article  Google Scholar 

  32. Seo K, Chung SJ, Slotine JJE (2010) Auton Robot 28(3):247

    Article  Google Scholar 

Download references

Acknowledgments

Parts of this work was presented in ICRA2013 [16] and ICRA2015 [18]. The authors would like to thank Dr. Bin Yao’ for his editorial comments on the conference manuscript [18].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyan Deng.

Additional information

Research supported by Air Force Research Lab (AFRL) under Grant 105758

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Cheng, B. & Deng, X. Instantaneous wing kinematics tracking and force control of a high-frequency flapping wing insect MAV. J Micro-Bio Robot 11, 67–84 (2016). https://doi.org/10.1007/s12213-015-0085-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12213-015-0085-4

Keywords

Navigation