Skip to main content
Log in

Caging for 2D and 3D micromanipulation

  • Research Paper
  • Published:
Journal of Micro-Nano Mechatronics Aims and scope Submit manuscript

Abstract

In this paper we demonstrate coordinated control of multiple micromanipulators for use in 2D and 3D micromanipulation tasks. We develop a feature-defined (FD) micro-caging transport primitive for 2D micromanipulation and use a similar methodology to extend it to the 3D case. Simultaneous movements of the coordinated micromanipulators allow for both 2D planar micro-caging grasps and micro-force closure grasps suitable for 3D micro-transporting tasks. Experimental results illustrate the success and accuracies of both the 2D and 3D methodologies. The new transport primitives are used in conjunction with our previous micromanipulation primitives and coordinated XY stage movements to semi-autonomously execute a number of representative 2D and 3D micromanipulation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Cecil J, Vasquez D, Powell D (2005) A review of gripping and manipulation techniques for micro-assembly applications. Int J Prod Res 43(4):819–828

    Article  Google Scholar 

  2. Savia M, Koivo H (2009) Contact micromanipulation-survey of strategies. IEEE/ASME Trans Mechatron 14(4):504–514

    Article  Google Scholar 

  3. Feddema J, Xavier P, Brown R (1999) Micro-assembly planning with van der Waals force. In: Proceedings of the IEEE international symposium on assembly and task planning (ISATP ’99), pp 32–38

  4. Zhou Y, Nelson B (2000) The effect of material properties and gripping force on micrograsping. In: Proceedings of the IEEE international conference on robotics & automation (ICRA), San Francisco, CA

  5. Keller C (1998) Microgrippers with integrated actuator and force sensors. In: Proceedings of the world automation congress, pp 217–222

  6. Cecil J, Gobinath N (2005) Development of a virtual and physical work cell to assemble micro-devices. Robot Comput-Integr Manuf 21(4–5):431–441. doi:10.1016/j.rcim.2004.11.014

    Article  Google Scholar 

  7. Alex J, Vikramaditya B, Nelson B (1998) A virtual reality teleoperator interface for assembly of hybrid MEMS prototypes. In: Proceedings of DETC’98 1998 ASME engineering technical conference, Atlanta, GA, 13–16 Sept 1998

  8. Kasaya T, Miyazaki H, Saito S, Sato T (1999) Micro object handling under SEM by vision-based automatic control. In: Proceedings of the IEEE international conference on robotics and automation, Detroit, MI, pp 2189–2196

  9. Das A, Zhang P, Lee W, Popa D, Stephanou H (2007) μ 3: multiscale, deterministic micro-nano assembly system for construction of on-wafer microrobots. In: IEEE international conference on robotics and automation (ICRA), Rome, Italy

  10. Moll M, Goldberg K, Erdmann M, Fearing R (2002) Orienting micro-scale parts with squeeze and roll primitives. In: IEEE int. conf. on robotics and automation, Washington, DC, 11–15 May 2002

  11. Fearing R (1995) Survey of sticking effects for micro parts handling. In: IEEE/RSJ int. conf. on intelligent robotics and sys. (IROS), Pittsburgh, PA, vol 2, pp 212–217, 5–9 Aug 1995

  12. Boehringer K, Fearing R, Goldberg K (1999) Handbook of industrial robotics, 2nd edn. Wiley, ch. Microassembly, pp 1045–1066

    Book  Google Scholar 

  13. Rougeot P, Regnier S, Chaillet N (2005) Forces analysis for micro-manipulation. In: 2005 IEEE international symposium on computational intelligence in robotics and automation, 2005. CIRA 2005. Proceedings, pp 105–110

  14. Yang G, Gaines J, Nelson B (2001) A flexible experimental workcell for efficient and reliable wafer-level 3d micro-assembly. In: IEEE international conference on robotics and automation, 2001. Proceedings 2001 ICRA, vol 1, pp 133–138

  15. Dechev N, Cleghorn W, Mills J (2003) Microassembly of 3d mems structures utilizing a mems microgripper with a robotic manipulator. In: IEEE international conference on robotics and automation, 2003. Proceedings, ICRA ’03, vol 3, pp 3193–3199

  16. Dechev N, Cleghorn W, Mills J (2004) Microassembly of 3-d microstructures using a compliant, passive microgripper. J Microelectromech Syst 13(2):176–189

    Article  Google Scholar 

  17. Dechev N, Ren L, Liu W, Cleghorn L, Mills J (2006) Development of a 6 degree of freedom robotic micromanipulator for use in 3d mems microassembly. In: Proceedings 2006 IEEE international conference on robotics and automation, 2006. ICRA 2006, pp 281–288

  18. Wang L, Ren L, Mills J, Cleghorn W (2007) Automatic 3d joining in microassembly. In: International conference on information acquisition, 2007. ICIA ’07, pp 292–297

  19. Popa D, Lee WH, Murthy R, Das A, Stephanou H (2007) High yield automated mems assembly. In: IEEE international conference on automation science and engineering, 2007. CASE 2007, pp 1099–1104

  20. Ren L, Wang L, Mills J, Sun D (2007) 3-d automatic microassembly by vision-based control. In: IEEE/RSJ international conference on intelligent robots and systems, 2007. IROS 2007, pp 297–302

  21. Rabenorosoa K, Clevy C, Lutz P, Bargiel S, Gorecki C (2009) A micro-assembly station used for 3d reconfigurable hybrid moems assembly. In: IEEE international symposium on assembly and manufacturing, 2009, ISAM 2009, pp 95–100

  22. Tamadazte B, Le Fort-Piat N, Dembele S, Marchand E (2009) Microassembly of complex and solid 3d mems by 3d vision-based control. In: IEEE/RSJ international conference on intelligent robots and systems, 2009. IROS 2009, pp 3284–3289

  23. Tamadazte B, Arnould T, Dembele S, Le Fort-Piat N, Marchand E (2009) Real-time vision-based microassembly of 3d mems. In: IEEE/ASME international conference on advanced intelligent mechatronics, 2009. AIM 2009, pp 88–93

  24. Hui E, Howe R, Rodgers M (2000) Single-step assembly of complex 3-d microstructures. In: The 13th annual international conference on micro electro mechanical systems, 2000. MEMS 2000, pp 602–607

  25. Paik JK, Kramer RK, Wood RJ (2011) Stretchable circuits and sensors for robotic origami. In: 2011 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 414–420

  26. Sariola V, Zhou Q, Koivo HN (2009) Three dimensional hybrid microassembly combining robotic microhandling and self-assembly. In: IEEE international conference on robotics and automation, 2009. ICRA ’09, pp 2605–2610

  27. Calin M, Chaillet N, Agnus J, Bourjault A (1997) Design of cooperative microrobots with impedance optimization. In: Proceedings of the 1997 IEEE/RSJ international conference on intelligent robots and systems, 1997. IROS ’97, vol 3, pp 1312–1317

  28. Helin P, Calin M, Sadaune V, Chaillet N, Druon C, Bourjault A (1997) Micro-conveying station for assembly of micro-components. In: Proceedings of the 1997 IEEE/RSJ international conference on intelligent robots and systems, 1997. IROS ’97, vol 3, pp 1306–1311

  29. Krishnan S, Saggere L (2007) A multi-fingered micromechanism for coordinated micro/nano manipulation. J Micromech Microeng 17:576–585

    Article  Google Scholar 

  30. Huang X, Lv X, Wang M (2006) Development of a robotic microassembly system with multi-manipulator cooperation. In: Proceedings of the 2006 IEEE international conference on mechatronics and automation, pp 1197–1201

  31. Murthy R, Das A, Popa D (2006) Multiscale robotics framework for mems assembly. In: 9th international conference on control, automation, robotics and vision, 2006. ICARCV 06, pp 1–6

  32. Das A, Murthy R, Popa D, Stephanou H (2012) A multiscale assembly and packaging system for manufacturing of complex micro-nano devices. IEEE Trans Autom Sci Eng 9(1):160–170

    Google Scholar 

  33. Wason J, Wen J, Choi Y-M, Gorman J, Dagalakis N (2010) Vision guided multi-probe assembly of 3d microstructures. In: 2010 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 5603–5609

  34. Wason J, Wen J, Dagalakis N (2011) Dextrous manipulation of a micropart with multiple compliant probes through visual force feedback. In: 2011 IEEE international conference on robotics and automation (ICRA), pp 5991–5996

  35. Bolopion A, Xie H, Haliyo D, Regnier S (2012) Haptic teleoperation for 3-d microassembly of spherical objects. IEEE/ASME Trans Mechatron 17(1):116–127

    Article  Google Scholar 

  36. Xie H, Haliyo D, Regnier S (2009) A versatile atomic force microscope for three-dimensional nanomanipulation and nanoassembly. Nanotechnology 20(21):215301-1–215301-9

    Article  Google Scholar 

  37. Kosuge K, Hirata Y, Kaetsu H, Kawabata K (1999) Motion control of multiple autonomous mobile robots handling a large object in coordination. In: IEEE int. conf. on robotics and automation, pp 2666–2673

  38. Rus D (1997) Coordinated manipulation of objects in a plane. Algorithmica 19(1):129–147

    Article  MathSciNet  MATH  Google Scholar 

  39. Sugar T, Kumar V (1999) Multiple cooperating mobile manipulators. In: IEEE int. conf. on robotics and automation, pp 1538–1543

  40. Mataric M, Nilsson M, Simsarian K (1995) Cooperative multi-robot box-pushing. In: IEEE/RSJ int. conf. on intelligent robots and systems, pp 556–561

  41. Lynch K, Mason M (1996) Stable pushing: mechanics, controllability, and planning. Int J Rob Res 15(6):553–556

    Article  Google Scholar 

  42. Pereira G, Kumar V, Campos M (2004) Decentralized algorithms for multi-robot manipulation via caging. Int J Rob Res (7/8):783–795

    Google Scholar 

  43. Fink J, Hsieh MA, Kumar V (2008) Multi-robot manipulation via caging in environments with obstacles. In: 2008 IEEE international conference on robotics and automation, Pasedena, CA

  44. Fink J, Michael N, Kumar V (2007) Composition of vector fields for multi-robot manipulation via caging. In: Proceedings of robotics: science and systems III, Atlanta, GA

  45. Cappelleri D, Fink J, Mukundakrishnan B, Kumar V, Trinkle J (2006) Designing open-loop plans for planar micro-manipulation. In: IEEE int. conf. on robotics and automation, Orlando, FL

  46. Cheng P, Cappelleri D, Gavrea B, Kumar V (2007) Planning and control of meso-scale manipulation tasks with uncertainties. In: Proceedings of robotics: science and systems, Atlanta, GA, USA

  47. Cappelleri D, Peng C, Fink J, Gavrea B, Kumar V (2011) Automated assembly for meso-scale parts. IEEE Trans Autom Sci Eng 8(3):598–613

    Article  Google Scholar 

  48. Cheng P, Fink J, Kumar V (2008) Abstractions and algorithms for cooperative multiple robot planar manipulation. In: Proceedings of robotics: science and systems IV, Zurich, Switzerland

  49. Mason M (1982) Manipulator grasping and pushing operations. PhD dissertation, Massachusetts Institute of Technology

  50. Mason M (1986) Mechanics and planning of manipulator pushing operations. Int J Rob Res 5(3):53–71

    Article  Google Scholar 

  51. Peshkin M, Sanderson A (1985) The motion of a pushed, sliding object, part 1: sliding friction. Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-85-18

  52. Song P, Pang J, Kumar V (2004) A semi-implicit timestepping model for frictional compliant contact problems. Int J Numer Methods Eng 60:2231–2261

    Article  MathSciNet  Google Scholar 

  53. Trinkle J, Berard S, Pang J (2005) A time-stepping scheme for quasistatic multibody systems. In: International symposium of assembly and task planning

  54. Cappelleri D, Fatovic M, Shah U (2011) Caging micromanipulation for automated microassembly. In: Proceedings of the IEEE international conference on robotics and automation, Shanghai, China

  55. Spong M, Hutchinson S, Vidyasagar M (2006) Robot modeling and control. Wiley, Hoboken

    Google Scholar 

  56. Cappelleri DJ, Fatovic M, Fu Z (2011) Caging grasps for micromanipulation amp; microassembly. In: 2011 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 925–930

Download references

Acknowledgements

Part of this work was supported by US Navy/Office of Naval Research Contract # N00014-11-M-0275. The authors would like to thank Wuming Jing for his help with manufacturing the micro-parts and test fixtures. We also acknowledge the Micro-Devices Laboratory at Stevens Institute of Technology, Prof. E.H. Yang and Dr. Seongjin Jang for providing the fabrication facility and required equipment training needed for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Cappelleri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cappelleri, D.J., Fu, Z. & Fatovic, M. Caging for 2D and 3D micromanipulation. J. Micro-Nano Mech. 7, 115–129 (2012). https://doi.org/10.1007/s12213-012-0050-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12213-012-0050-4

Keywords

Navigation