Skip to main content
Log in

Analysis of stability and transparency for nanoscale force feedback in bilateral coupling

  • Research Paper
  • Published:
Journal of Micro-Nano Mechatronics Aims and scope Submit manuscript

Abstract

This paper deals with the problem of finding a compromise between stability and transparency for bilateral haptic control in nanorobotics. While manipulating objects with an AFM, real time visual feedback is not available. Force feedback is used to compensate for this lack of visual information. The structure of the control scheme and the value of the controller gains are critical issues for stability, transparency, and ease of manipulation. Two common control schemes are analyzed for submicron scale interactions. Based on stability and transparency criteria, the influence of each of the controllers’ gains is derived. The applications for which the bilateral couplings are best suited, as well as their intrinsic limitations are discussed. The theoretical analysis is validated with an experiment composed of several phases with high dynamic phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. http://www.physikinstrumente.com/

  2. http://www.haption.com/

References

  1. Sitti M (2007) Microscale and nanoscale robotics systems [grand challenges of robotics]. IEEE Robot Autom Mag 14(1):53–60

    Article  Google Scholar 

  2. Ferreira A, Mavroidis C (2006) Virtual reality and haptics for nanorobotics. IEEE Robot Autom Mag 13(3):78–92

    Article  Google Scholar 

  3. Hollis R, Salcudean S, Abraham D (1990) Toward a tele-nanorobotic manipulation system with atomic scale force feedback and motion resolution. In: IEEE workshop on micro electro mechanical systems, Napa Valley, 12–14 February 1990, pp 115–119

  4. Goldfarb, M (1998) Dimensional analysis and selective distorsion in scaled bilateral telemanipulation. In: Proceedings of the IEEE international conference on robotics and automation. IEEE, Piscataway, pp 1609–1614

    Google Scholar 

  5. Niemeyer G, Slotine JJ (1991) Stable adaptive teleoperation. IEEE J Oceanic Eng 16(1):152–162

    Article  Google Scholar 

  6. Anderson R, Spong M (1989) Bilateral control of teleoperators with time delay. IEEE Trans Automat Contr 34(5):494–501

    Article  MathSciNet  Google Scholar 

  7. Ryu JH, Kim YS, Hannaford B (2004) Sampled- and continuous-time passivity and stability of virtual environment. IEEE Trans Robot Autom 20(4):772–776

    Google Scholar 

  8. Daunay B, Micaelli A, Régnier S (2007) 6 DOF haptic feedback for molecular docking using wave variables. In: Proceedings of the IEEE international conference on robotics and automation. IEEE, Piscataway, pp 840–845

    Chapter  Google Scholar 

  9. Kim SG, Sitti M (2006) Task-based and stable telenanomanipulation in a nanoscale virtual environment. IEEE Trans Autom Sci Eng 3(3):240–247

    Article  Google Scholar 

  10. Boukhnifer M, Ferreira A (2007) H-infinity loop shaping bilateral controller for a two-fingered tele-micromanipulation system. IEEE Trans Control Syst Technol 15(5):891–905

    Article  Google Scholar 

  11. Boukhnifer M, Ferreira A (2006) Wave-based passive control for transparent micro-teleoperation system. Robot Auton Syst 54(7):601–615

    Article  Google Scholar 

  12. Kaneko K, Tokashiki H, Tanie K, Komoriya K (1997) Impedance shaping based on force feedback bilateral control in macro-micro teleoperation system. In: Proceedings of the IEEE international conference on robotics and automation. IEEE, Piscataway, pp 710–717

    Google Scholar 

  13. Onal CD, Sitti M (2009) A scaled bilateral control system for experimental one-dimensional teleoperated nanomanipulation. Int J Rob Res 28(4):484–497

    Article  Google Scholar 

  14. Venture G, Haliyo DS, Régnier S, Micaelli A (2005) Force-feedback micromanipulation with unconditionally stable coupling. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems. IEEE, Piscataway, pp 1923–1928

    Google Scholar 

  15. Tian X, Liu L, Jiao N, Wang Y, Dong Z, Xi N (2004) 3D nano forces sensing for an AFM based nanomanipulator. In: Proceedings of the IEEE international conference on information acquisition. IEEE, Piscataway, pp 208–212

    Chapter  Google Scholar 

  16. Xie H, Vitard J, Haliyo DS, Régnier S, Boukallel M (2008) Calibration of lateral force measurements in atomic force microscopy. Rev Sci Instrum 79:033708

    Article  Google Scholar 

  17. Onal CD, Pawashe C, Sitti M (2007) A scaled bilateral control system for experimental 1-D teleoperated nanomanipulation applications. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems. IEEE, Piscataway, pp 483–488

    Google Scholar 

  18. Ammi M, Ferreira A (2007) Robotic assisted micromanipulation system using virtual fixtures and metaphors. In: Proceedings of the IEEE international conference on robotics and automation. IEEE, Piscataway, pp 454–460

    Chapter  Google Scholar 

  19. Ando N, Ohta M, Hashimoto H (2000) Micro teleoperation with haptic interface. In: 26th annual conference of the IEEE industrial electronics society, vol 1. IEEE, Piscataway, pp 13–18

    Google Scholar 

  20. Goethals P, Gersem GD, Sette M, Reynaerts D, Brussel HV (2007) Accurate haptic teleoperation on soft tissues through slave friction compensation by impedance reflection. In: Proceedings of the second joint EuroHaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems, Tsukuba, 22–24 March 2007

  21. Maugis D (2000) Contact, adhesion and rupture of elastic solids, vol 130, chap 4. Springer, New York pp 203–344

    Google Scholar 

  22. Lawrence D (1993) Stability and transparency in bilateral teleoperation. IEEE Trans Robot Autom Autom 9(5):624–637

    Article  MathSciNet  Google Scholar 

  23. Hokayem PF, Spong MW (2006) Bilateral teleoperation: an historical survey. Automatica 42(12):2035–2057

    Article  MATH  MathSciNet  Google Scholar 

  24. Adams RJ, Hannaford B (1999) Stable haptic interaction with virtual environments. IEEE Trans Robot Autom Autom 15(3):465–474

    Article  Google Scholar 

  25. Hogan N (1989) Controlling impedance at the man/machine interface. In: Proceedings of the IEEE international conference on robotics and automation. IEEE, Piscataway, pp 1626–1631

    Google Scholar 

  26. Llewellyn F (1952) Some fundamental properties of transmission systems. Proc IRE 40(3):271–283

    Article  Google Scholar 

  27. Gil JJ, Avello A, Rubio A, Flórez J (2004) Stability analysis of a 1 DOF haptic interface using the Routh-Hurwitz criterion. IEEE Trans Control Syst Technol 12(4):583–588

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the French National Agency of Research, through the PACMAN project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aude Bolopion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolopion, A., Cagneau, B., Haliyo, D.S. et al. Analysis of stability and transparency for nanoscale force feedback in bilateral coupling. J. Micro-Nano Mech. 4, 145–158 (2008). https://doi.org/10.1007/s12213-009-0016-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12213-009-0016-3

Keywords

Navigation