Skip to main content

Advertisement

Log in

Gas hydrate stability zone in shallow Arctic Ocean in presence of sub-sea permafrost

  • Environmental Changes in Arctic
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

Vast quantities of gas hydrate could be trapped in the Arctic Ocean, and there is concern that a rise in the ocean temperatures could induce dissociation of these hydrate accumulations, potentially releasing large amounts of methane. In first approximation, the hydrate is not stable in the Arctic shelf because of the low pressure (shallow water), but if we consider presence of sub-sea permafrost in this area the hydrate can be stable. In this context, we define the areas where conditions prevail for gas hydrates stability in the Arctic shelf versus sub-sea permafrost thickness, temperature and geothermal gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson LG et al (2011) East Siberian Sea, an Arctic region of very high biogeochemical activity. Biogeosciences 8:1745–1754

    Article  CAS  Google Scholar 

  • AMAP Assessment (2015) Methane as an Arctic climate forcer. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, pp vii + 139

  • Bard E, Hamelin B, Fairbanks RG (1990) U/Th ages obtained by mass spectrometry in corals from Barbados: sea level during the past 130,000 years. Nature 346:456–458

    Article  CAS  Google Scholar 

  • Buffett B, Archer D (2004) Global inventory of methane clathrate: sensitivity to changes in the deep ocean. Earth Planet Sci Lett 227:185–199

    Article  CAS  Google Scholar 

  • Bugge T, Elvebakk G, Fanavoll S et al (2002) Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sea. Mar Pet Geol 19(1):13–37

    Article  CAS  Google Scholar 

  • Chand S, Mienert J, Andreassen K, Knies J, Plassen L, Fotland B (2008) Gas hydrate stability zone modelling in areas of salt tectonics and pockmarks of the Barents Sea suggests an active hydrocarbon venting system. Mar Pet Geol 25(7):625–636

    Article  Google Scholar 

  • Chuvilin EM, Yakushev VS, Perlova EV (2000) Gas hydrates in the permafrost of Bovanenkovo gas field, Yamal Peninsula, West Siberia. Polarforschung 68:215–219

    Google Scholar 

  • Collett TS, Lee MW, Agena WF, Miller JJ, Lewis KA, Zyrianova MV, Boswell R, Inks TL (2011) Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope. Mar Pet Geol 28:279–294

    Article  Google Scholar 

  • Dallimore SR, Wright JF, Nixon FM, Kurihara M, Yamamoto K, Fujii T, Fujii K, Numasawa M, Yasuda M, Imasato Y (2008a) Geologic and porous media factors affecting the 2007 production response characteristics of the JOGMEC/NRCAN/AURORA Mallik gas hydrate production research well. In: Proceedings of the 6th International Conference on Gas Hydrates, Vancouver, British Columbia, Canada, p 10

  • Dallimore SR, Wright JF, Yamamoto K (2008b) Appendix D: update on Mallik. In: Energy from gas hydrates: assessing the opportunities and challenges for Canada, Ottawa, Canada, Council of Canadian Academies, pp 196–200

  • Dmitrenko IA, Kirillov SA, Tremblay LB, Kassens H, Anisimov OA, Lavrov SA, Razumov SO, Grigoriev MN (2011) Recent changes in shelf hydrography in the Siberian Arctic: potential for subsea permafrost instability. J Geophys Res 116:C10027

    Article  Google Scholar 

  • Giorgetti A, Crise A, Laterza R, Perini L, Rebesco M, Camerlenghi A (2003) Water masses and bottom boundary layer dynamics above a sediment drift of the Antarctic Peninsula pacific margin. Antarct Sci 15(4):537–546

    Article  Google Scholar 

  • Giustiniani M, Accettella D, Loreto MF, Tinivella U, Accaino F (2009) Geographic information system—an application to manage geophysical data. In: Proceedings of the 71st European Association of Geoscientists and Engineers Conference and Exhibition, Society of Petroleum Engineers, Amsterdam, pp 340–344

  • Giustiniani M, Tinivella U, Jakobsson M, Rebesco M (2013) Arctic ocean gas hydrate stability in a changing climate. J Geol Res. doi:10.1155/2013/783969

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007) Climate Change (2007) New York. Cambridge University Press, New York

    Book  Google Scholar 

  • Jakobsson M (2015) International bathymetric chart of the Arctic Ocean (IBCAO). Encycl Mar Geosci 2015:1–4

    Article  Google Scholar 

  • Jones FW, Majorowicz JA, Dietrich J, Jessop AM (1990) Geothermal gradients and heat flow in the Beaufort-Mackenzie Basin, Arctic Canada. Pure Appl Geophys 134(3):473–483

    Article  Google Scholar 

  • Kaplin PA (1973) Recent history of the coasts of the world ocean. Izd-vo Mosk, Moscow

    Google Scholar 

  • Kaplin PA, Selivanov AO (1999) Changes in Russia’s sea levels and seashore evolution: past, present and future. GEOS, Moscow

    Google Scholar 

  • Kendall RA, Mitrovica JX, Milne GA (2005) On post-glacial sea level II. Numerical formulation and comparative results on spherically symmetric models. Geophys J Int 161:679–706

    Article  Google Scholar 

  • Lantuit H, Overduin PP, Couture N, Wetterich S, Aré F, Atkinson D, Brown J, Cherkashov G, Drozdov D, Lawrence D, Jorgenson T, Strand Ødegård R, Ogorodov S, Pollard WH, Rachold V, Sedenko S, Solomon S, Steenhuisen F, Streletskaya I, Vasiliev A (2012) The Arctic coastal dynamics database: a new classification scheme and statistics on Arctic permafrost coastlines. Estuaries Coasts 35(2):383–400

    Article  CAS  Google Scholar 

  • Loreto MF, Tinivella U (2012) Gas hydrate versus geological features: the South Shetland case study. Mar Pet Geol 36(1):164–171

    Article  Google Scholar 

  • Makogon YF (1984) Production from natural gas hydrate deposits. Gazovaya Promishlennost 10:24–26

    Google Scholar 

  • Marín-Moreno H, Minshull TA, Westbrook GK, Sinha B, Sarkar S (2013) The response of methane hydrate beneath the seabed offshore Svalbard to ocean warming during the next three centuries. Geophys Res Lett 40(19):5159–5163

    Article  Google Scholar 

  • Marín-Moreno H, Giustiniani M, Tinivella U, Piñero E (2016a) The challenges of quantifying the carbon stored in Arctic marine gas hydrate. Mar Pet Geol 71:76–82

    Article  Google Scholar 

  • Marín-Moreno H, Giustiniani M, Tinivella U (2016b) The potential response of the hydrate reservoir in the South Shetland Margin, Antarctic Peninsula, to Ocean Warming over the 21st Century. Polar Research (in press)

  • Matsumoto R (2002) Comparisons of marine and permafrost gas hydrates: examples from the Nankai Trough and Mackenzie Delta. In: Proceedings of the fourth international hydrate conference, Yokohama, Japan

  • Moridis GJ, Collett TS, Pooladi-Darwish M, Hancock S, Santamarina C, Boswell R, Kneafsey T, Rutqvist J, Kowalsky MJ, Reagan MT, Sloan ED, Sum AK, Koh C (2011) Challenges, uncertainties and issues facing gas production from hydrate deposits in geologic systems. Res Eval Eng 14(1):76–112

    CAS  Google Scholar 

  • Notz D, Haumann FA, Haak H, Jungclaus JH, Marotzke J (2013) Arctic sea-ice evolution as modeled by Max Planck Institute for meteorology’s Earth system model. J Adv Model Earth Syst 5:173–194

    Article  Google Scholar 

  • Overduin PP, Liebner S, Knoblauch C, Günther F, Wetterich S, Schirrmeister L, Hubberten H-W, Grigoriev MN (2015) Methane oxidation following submarine permafrost degradation: measurements from a central Laptev Sea shelf borehole. J Geophys Res Biogeosci 120:965–978

    Article  CAS  Google Scholar 

  • Parmentier F-JW, Christensen TR (2013) Arctic: speed of methane release. Nature 500:529

    Article  CAS  Google Scholar 

  • Peltier WR (2004) Ice age paleotopography. Science 265(5169):195–201

    Article  Google Scholar 

  • Portnov A, Smith AJ, Mienert J, Cherkashov G, Rekant P, Semenov P, Serov P, Vanshtein B (2013) Offshore permafrost decay and massive seabed methane escape in water depths >20 m at the South Kara Sea shelf. Geophys Res Lett 40:1–6. doi:10.1002/grl.50735

    Article  Google Scholar 

  • Rachold V, Yu D, Bolshiyanov MN, Grigoriev H-W, Hubberten R, Junker VV, Kunitsky F, Merker PP, Overduin P, Schneider W (2007) Near-shore Arctic subsea permafrost in transition. EOS Trans Am Geophys Union 88(13):149–156

    Article  Google Scholar 

  • Reiter MA, Jessop AM (1985) Estimates of terrestrial heat flow in offshore Eastern Canada. Can J Earth Sci 72:1503–1517

    Article  Google Scholar 

  • Romanovskii NN, Hubberten H-W, Gavrilov AV, Eliseeva AA, Tipenko GS (2005) Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas. Geophys Mar Lett 25:167–182. doi:10.1007/s00367-004-0198-6

    Article  CAS  Google Scholar 

  • Ruppel C (2011) Methane hydrates and contemporary climate change. Nat Educ Knowl 3(10):29

    Google Scholar 

  • Ruppel C, Dickens GR, Castellini DG, Gilhooly W, Lizarralde D (2005) Heat and salt inhibition of gas hydrate formation in the northern Gulf of Mexico. Geophys Res Lett 32(4):1–4

    Article  Google Scholar 

  • Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459(7246):556–559

    Article  CAS  Google Scholar 

  • Shakhova N, Semiletov I (2007) Methane release and coastal environment in the East Siberian Arctic shelf. J Mar Syst 66:227–243

    Article  Google Scholar 

  • Shakhova N, Semiletov I, Salyuk A, Yusupov V, Kosmach D, Gustafsson Ö (2010) Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic shelf. Science 327:1246–1250. doi:10.1126/science.1182221

    Article  CAS  Google Scholar 

  • Sloan ED (1998) Clathrate hydrates of natural gases, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Spielhagen RF, Werner K, Sørensen SA, Zamelcyk K, Kandiano E, Budeus G, Husum K, Marchitto TM, Hald M (2011) Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science (Wash.) 331(6016):450–453

    Article  CAS  Google Scholar 

  • Taylor AE, Wang K (2008) Geothermal inversion of Canadian Arctic ground temperatures and effect of permafrost aggradation at emergent shorelines. Geochem Ceophys Geosyst 9(7):Q07019

    Google Scholar 

  • Taylor AE, Burgess M, Judge AS, Allen VS (1982) Canadian Geothermal data collection—Northern Wells. Geothermal Ser 13:153

    Google Scholar 

  • Tinivella U, Carcione JM (2001) Estimation of gas-hydrate concentration and free-gas saturation from log and seismic data. Lead Edge 20(2):200–203

    Article  Google Scholar 

  • Tinivella U, Giustiniani M (2013) Variations in BSR depth due to gas hydrate stability versus pore pressure. Global Planet Change 100:119–128

    Article  Google Scholar 

  • Westbrook GK, Thatcher KE, Rohling EJ et al (2009) Escape of methane gas from the seabed along the West Spitsbergen continental margin. Geophys Res Lett 36(15):L15608

    Article  Google Scholar 

  • Yamamoto K, Dallimore S (2008) Aurora-JOGMEC-NRCan Mallik 2006–2008 gas hydrate research project progress. In: DOE-NETL fire in the ice methane hydrate newsletter, pp 1–5

Download references

Acknowledgments

The authors wish to thank Manuela Sedmach for the graphic support. The authors largely benefited from suggestions of two anonymous journal reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umberta Tinivella.

Additional information

This peer-reviewed article is a result of the multi and interdisciplinary research activities based at the Arctic Station “Dirigibile Italia”, coordinated by the “Dipartimento Scienze del Sistema Terra e Tecnologie per l’Ambiente” of the National Research Council of Italy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tinivella, U., Giustiniani, M. Gas hydrate stability zone in shallow Arctic Ocean in presence of sub-sea permafrost. Rend. Fis. Acc. Lincei 27 (Suppl 1), 163–171 (2016). https://doi.org/10.1007/s12210-016-0520-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-016-0520-z

Keywords

Navigation