Skip to main content
Log in

Coherent perfect absorption in photonic structures

  • Life, New Materials and Plasmonics
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

The ability to drive a system with an external input is a fundamental aspect of light–matter interaction. The coherent perfect absorption (CPA) phenomenon extends to the general multibeam interference phenomenology the well-known critical coupling concepts (Haus in Waves and fields in optoelectronics. Prentice-Hall, Englewood Cliffs, 1984; Yariv and Yeh in Optical Electronics in Modern Communication. Oxford University Press, New York, 2007). The latter detail the conditions under which the energy of the input field is fed in full to the absorbing element. In a multi-port system, the relative phase of the incoming fields can yield the ultimate control of the absorption, from CPA to complete transparency (coherent perfect transparency, CPT), and also beyond, in amplifying regimes, to laser threshold control (Longhi in Phys Rev A 82:031801, 2010; Sun et al. in Phys Rev Lett 112:143903, 2014). This interferometric control of absorption can be employed to reach perfect energy feeding into nanoscale systems such as plasmonic nanoparticles (Noh et al. in Phys Rev Lett 108(18):186805, 2012), and multi-port interference can be used to enhance the absorption when they are embedded in a strongly scattering system (Chong and Stone in Phys Rev Lett 107(16):163901, 2011), with potential applications to nanoscale sensing. Here we review the two-port CPA in reference to photonic structures which can resonantly couple to the external fields. A revised two-port theory of CPA is illustrated, which relies on the Scattering Matrix formalism and is valid for all linear two-port systems with reciprocity. Through a semiclassical approach, treating two-port critical coupling conditions in a non-perturbative regime, it is demonstrated that the strong-coupling regime and the critical coupling condition can indeed coexist; in this situation, termed strong critical coupling (Zanotto et al. in Nature Phys 10(11):830–834, 2014), all the incoming energy is converted into polaritons. Experimental results are presented, which clearly display the elliptical trace of absorption as function of input unbalance in a thin metallo-dielectric metamaterial, and verify polaritonic CPA in an intersubband polariton photonic crystal membrane resonator. Concluding remarks discuss the future perspectives of CPA with photonic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. It should be noticed that a degenerate situation, in which \(S\) is the zero matrix, can also occur: this case corresponds to two decoupled single-port perfect absorbers.

References

  • Amo A, Sanvitto D, Laussy F, Ballarini D, Del Valle E, Martin M, Lemaitre A, Bloch J, Krizhanovskii D, Skolnick M et al (2009) Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457(7227):291–295

    Article  CAS  Google Scholar 

  • Andreani LC, Panzarini G, Gérard J-M (1999) Strong-coupling regime for quantum boxes in pillar microcavities: theory. Phys Rev B 60:13276–13279. doi:10.1103/PhysRevB.60.13276

    Article  CAS  Google Scholar 

  • Aspnes D, Studna A (1983) Dielectric functions and optical parameters of si, ge, gap, gaas, gasb, inp, inas, and insb from 1.5 to 6.0 ev. Phys Rev B 27(2):985

    Article  CAS  Google Scholar 

  • Auffèves A, Gerace D, Gérard J-M, Santos MF, Andreani L, Poizat J-P (2010) Controlling the dynamics of a coupled atom-cavity system by pure dephasing. Phys Rev B 81(24):245419

    Article  Google Scholar 

  • Auffèves-Garnier A, Simon C, Gérard J-M, Poizat J-P (2007) Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the purcell regime. Phys Rev A 75:053823. doi:10.1103/PhysRevA.75.053823

    Article  Google Scholar 

  • Barnett SM, Jeffers J, Gatti A, Loudon R (1998) Quantum optics of lossy beam splitters. Phys Rev A 57:2134–2145. doi:10.1103/PhysRevA.57.2134

    Article  CAS  Google Scholar 

  • Chew WC (1995) Waves and fields in inhomogeneous media, vol 522. IEEE press, NewYork

  • Chong YD, Ge L, Cao H, Stone AD (2010) Coherent perfect absorbers: time-reversed lasers. Phys Rev Lett 105:053901. doi:10.1103/PhysRevLett.105.053901

    Article  CAS  Google Scholar 

  • Chong Y, Stone AD (2011) Hidden black: coherent enhancement of absorption in strongly scattering media. Phys Rev Lett 107(16):163901

    Article  CAS  Google Scholar 

  • Chutinan A, John S (2008) Light trapping and absorption optimization in certain thin-film photonic crystal architectures. Phys Rev A 78:023825. doi:10.1103/PhysRevA.78.023825

    Article  Google Scholar 

  • De Liberato S, Ciuti C (2009) Stimulated scattering and lasing of intersubband cavity polaritons. Phys Rev Lett 102:136403. doi:10.1103/PhysRevLett.102.136403

    Article  Google Scholar 

  • De Liberato S, Ciuti C, Phillips CC (2013) Terahertz lasing from intersubband polariton-polariton scattering in asymmetric quantum wells. Phys Rev B 87:241304. doi:10.1103/PhysRevB.87.241304

    Article  Google Scholar 

  • DeglInnocenti R, Zanotto S, Tredicucci A, Biasiol G, Sorba L (2011) One-dimensional surface-plasmon gratings for the excitation of intersubband polaritons in suspended membranes. Solid State Commun 151(23):1725–1727. doi:10.1016/j.ssc.2011.09.002

  • Dietze D, Unterrainer K, Darmo J (2013) Role of geometry for strong coupling in active terahertz metamaterials. Phys Rev B 87(7):075324

    Article  Google Scholar 

  • Dini D, Köhler R, Tredicucci A, Biasiol G, Sorba L (2003) Microcavity polariton splitting of intersubband transitions. Phys Rev Lett 90:116401. doi:10.1103/PhysRevLett.90.116401

    Article  Google Scholar 

  • Fan S, Suh W, Joannopoulos JD (2003) Temporal coupled-mode theory for the fano resonance in optical resonators. J Opt Soc Am A 20(3):569–572. doi:10.1364/JOSAA.20.000569

    Article  Google Scholar 

  • Ghebrebrhan M, Bermel P, Yeng Y, Celanovic I, Joannopoulos J, Soljači č M (2011) Tailoring thermal emission via \(q\) matching of photonic crystal resonances. Phys Rev A 83:033810. doi:10.1103/PhysRevA.83.033810

    Article  Google Scholar 

  • Granet G, Guizal B (1996) Efficient implementation of the coupled-wave method for metallic lamellar gratings in tm polarization. J Opt Soc Am A 13(5):1019–1023. doi:10.1364/JOSAA.13.001019

    Article  Google Scholar 

  • Haus HA (1984) Waves and fields in optoelectronics. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Jalas D, Petrov A, Eich M, Freude W, Fan S, Yu Z, Baets R, Popovic M, Melloni A, Joannopoulos JD, Vanwolleghem M, Doerr CR, Renner H (2013) What is—and what is not—an optical isolator. Nature Photon 7(8):579–582. doi:10.1038/nphoton.2013.185

    Article  CAS  Google Scholar 

  • Johnson PB, Christy R-W (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370

    Article  CAS  Google Scholar 

  • Kaluzny Y, Goy P, Gross M, Raimond JM, Haroche S (1983) Observation of self-induced rabi oscillations in two-level atoms excited inside a resonant cavity: the ringing regime of superradiance. Phys Rev Lett 51:1175–1178. doi:10.1103/PhysRevLett.51.1175

    Article  CAS  Google Scholar 

  • Kimble HJ (1994) Structure and dynamics in cavity quantum electrodynamics, in cavity quantum electrodynamics. In: Berman BR Academic Press, Boston

  • Longhi S (2010) Pt-symmetric laser absorber. Phys Rev A 82:031801. doi:10.1103/PhysRevA.82.031801

    Article  Google Scholar 

  • Manceau J-M, Zanotto S, Sagnes I, Beaudoin G, Colombelli R (2013) Optical critical coupling into highly confining metal-insulator-metal resonators. Appl Phys Lett 103(9):091110

    Article  Google Scholar 

  • Noh H, Chong Y, Stone AD, Cao H (2012) Perfect coupling of light to surface plasmons by coherent absorption. Phys Rev Lett 108(18):186805

    Article  Google Scholar 

  • Peter E, Senellart P, Martrou D, Lemaitre A, Hours J, Gerard J, Bloch J (2005) Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys Rev Lett 95:067401. doi:10.1103/PhysRevLett.95.067401

    Article  CAS  Google Scholar 

  • Reithmaier JP, Sek G, Loffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh LV, Kulakovskii VD, Reinecke TL, Forchel A (2004) Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432:197. doi:10.1038/nature02969

    Article  CAS  Google Scholar 

  • Savona V, Andreani LC, Schwendimann P, Quattropani A (1995) Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes. Solid State Commun 93(9):733–739. doi:10.1016/0038-1098(94)00865-5

    Article  CAS  Google Scholar 

  • Shen J-T, Fan S (2009a) Theory of single-photon transport in a single-mode waveguide. i. coupling to a cavity containing a two-level atom. Phys Rev A 79:023837. doi:10.1103/PhysRevA.79.023837

    Article  Google Scholar 

  • Shen J-T, Fan S (2009b) Theory of single-photon transport in a single-mode waveguide. ii. coupling to a whispering-gallery resonator containing a two-level atom. Phys Rev A 79:023838. doi:10.1103/PhysRevA.79.023838

    Article  Google Scholar 

  • Shen J-T, Fan S (2010) Quantum critical coupling conditions for zero single-photon transmission through a coupled atom-resonator-waveguide system. Phys Rev A 82:021802. doi:10.1103/PhysRevA.82.021802

    Article  Google Scholar 

  • Srinivasan K, Painter O (2007) Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity. Phys Rev A 75:023814. doi:10.1103/PhysRevA.75.023814

    Article  Google Scholar 

  • Sun Y, Tan W, Li H-Q, Li J, Chen H (2014) Experimental demonstration of a coherent perfect absorber with pt phase transition. Phys Rev Lett 112:143903. doi:10.1103/PhysRevLett.112.143903

    Article  Google Scholar 

  • Thompson RJ, Rempe G, Kimble HJ (1992) Observation of normal-mode splitting for an atom in an optical cavity. Phys Rev Lett 68:1132–1135. doi:10.1103/PhysRevLett.68.1132

    Article  CAS  Google Scholar 

  • Wan W, Chong Y, Ge L, Noh H, Stone AD, Cao H (2011) Time-reversed lasing and interferometric control of absorption. Science 331(6019):889–892. doi:10.1126/science.1200735

    Article  CAS  Google Scholar 

  • Weisbuch C, Nishioka M, Ishikawa A, Arakawa Y (1992) Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys Rev Lett 69:3314–3317. doi:10.1103/PhysRevLett.69.3314

    Article  CAS  Google Scholar 

  • Yariv A, Yeh P (2007) Photonics: optical electronics in modern communication. Oxford University Press, New York

    Google Scholar 

  • Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs HM, Rupper G, Ell C, Shchekin OB, Deppe DG (2004) Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432:200. doi:10.1038/nature03119

    Article  CAS  Google Scholar 

  • Yu Z, Raman A, Fan S (2012) Thermodynamic upper bound on broadband light coupling with photonic structures. Phys Rev Lett 109:173901. doi:10.1103/PhysRevLett.109.173901

    Article  Google Scholar 

  • Zanotto S, Degl’Innocenti R, Sorba L, Tredicucci A, Biasiol G (2012) Analysis of line shapes and strong coupling with intersubband transitions in one-dimensional metallodielectric photonic crystal slabs. Phys Rev B 85:035307. doi:10.1103/PhysRevB.85.035307

    Article  Google Scholar 

  • Zanotto S, Mezzapesa FP, Bianco F, Biasiol G, Baldacci L, Vitiello MS, Sorba L, Colombelli R, Tredicucci A (2014) Perfect energy-feeding into strongly coupled systems and interferometric control of polariton absorption. Nature Phys 10(11):830–834. doi:10.1038/NPHYS3106

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the ERC advanced Grant No. 321122 SouLMan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Baldacci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldacci, L., Zanotto, S. & Tredicucci, A. Coherent perfect absorption in photonic structures. Rend. Fis. Acc. Lincei 26 (Suppl 2), 219–230 (2015). https://doi.org/10.1007/s12210-015-0428-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-015-0428-z

Keywords

Navigation