Skip to main content
Log in

Metrology to support therapeutic and diagnostic techniques based on electromagnetics and nanomagnetics

  • Life, New Materials and Plasmonics
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

This paper presents an overview of the recent research activities carried on at INRIM in the field of metrology for healthcare, aiming at supporting therapeutic and diagnostic techniques based on electromagnetics and nanomagnetics. Attention is here specifically focused on three research topics, respectively related to electromagnetic dosimetry for MR-safety, production and characterization of magnetic Ni80Fe20 nanodisks for biomedical applications and development of modeling tools to support the design of novel biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Biro O, Preis K, Renhart W, Vrisk G, Richter KR (1993) Computation of 3-D current driven skin effect problems using a current vector potential. IEEE Trans Magn 29(2):1325–1328

    Article  Google Scholar 

  • Bottauscio O, Chiampi M, and Zilberti L (2014) Massively parallelized boundary element simulation of voxel-based human models exposed to MRI fields. IEEE Trans Magn 50(2): 7025504

  • Cabot E, Lloyd T, Christ A, Kainz W, Douglas M (2013) Evaluation of the RF heating of a generic deep brain stimulator exposed in 1.5 T magnetic resonance scanners. Bioelectromagnetics 34(2):104–113

    Article  Google Scholar 

  • Collins CM, Smith MB (2003) Spatial resolution of numerical models of man and calculated specific absorption rate using the FDTD method: a study at 64 MHz in a magnetic resonance imaging coil. J Magn Reson Imaging 18:383–388

    Article  Google Scholar 

  • Collins CM, Wang Z (2011) Calculation of radiofrequency electromagnetic fields and their effects in MRI of human subjects. Magn Reson Med 65:1470–1482

    Article  Google Scholar 

  • Corte-León H, Nabaei V, Manzin A, Fletcher J, Krzysteczko P, Schumacher HW, Kazakova O (2014) Anisotropic magnetoresistance state space of permalloy nanowires with domain wall pinning geometry. Sci Rep 4: 6045

  • Corte-León H, Krzysteczko P, Schumacher HW, Manzin A, Antonov V, Kazakova O (2015) Magnetic bead detection using domain wall-based nanosensor. J Appl Phys (in press)

  • Donolato M et al (2009) Nanosized corners for trapping and detecting magnetic nanoparticles. Nanotechnology 20:385501

    Article  Google Scholar 

  • Folks L et al (2009) Near-surface nanoscale InAs Hall cross sensitivity to localized magnetic and electric fields. J Phys: Condens Matter 21:255802

    CAS  Google Scholar 

  • Freitas PP, Ferreira R, Cardoso S, Cardoso F (2007) Magnetoresistive sensors. J Phys Condens Matter 19: 165221

  • Giordano D, Zilberti L, Borsero M, Chiampi M, Bottauscio O (2014) Experimental validation of MRI dosimetric simulations in phantoms including metallic objects. IEEE Trans Magn 50(11): 5101504

  • Hasgall PA, Neufeld E, Gosselin MC, Klingenböck A, Kuster N (2013) IT’IS Database for thermal and electromagnetic parameters of biological tissues. Version 2.3, February 11th. www.itis.ethz.ch/database

  • Huang HT, Ger TR, Lin YH, Wei ZH (2013) Single cell detection using a magnetic zigzag nanowire biosensor. Lab Chip 13:3098–3104

    Article  CAS  Google Scholar 

  • Huang L, Zhang Z, Chen B, Ma X, Zhong H, Peng LM (2014) Ultra-sensitive graphene Hall elements. Appl Phys Lett 104:183106

    Article  Google Scholar 

  • International Commission on non-Ionizing Radiation Protection (2014) Guidelines for limiting exposure to electric fields induced by movement of the human body in a static magnetic field and by time-varying magnetic fields below 1 Hz. Health Phys 106(3):418–425

    Google Scholar 

  • IT’IS Foundation Virtual family dataset (2014) http://www.itis.ethz.ch/news-events/news/latest-news/

  • Kim DH, Rozhkova EA, Ulasov IV, Bader SD, Rajh T, Lesniak MS, Novosad V (2010) Biofunctionalized magnetic vortex microdisks for targeted cancer cell destruction. Nat Mater 9:165–171

    Article  CAS  Google Scholar 

  • Krakowski MR (1991) Some theorems of the eddy-current theory. Archiv für Elektrotechnik 74:329–334

    Article  Google Scholar 

  • Llandro J, Palfreyman JJ, Ionescu A, Barnes CHV (2010) Magnetic biosensor technologies for medical applications: a review. Med Biol Eng Comput 48:977–998

    Article  CAS  Google Scholar 

  • Manzin A, Nabaei V, Kazakova O (2012) Modelling and optimization of submicron Hall sensors for the detection of superparamagnetic beads. J Appl Phys 111: 07E513

  • Manzin A, Nabaei V, Corte-León H, Kazakova O, Krzysteczko P, Schumacher HW (2014) Modeling of anisotropic magnetoresistance properties of permalloy nanostructures. IEEE Trans Magn 50:7100204

    Article  Google Scholar 

  • Manzin A, Simonetto E, Amato G, Panchal V, Kazakova O (2015) Modeling of graphene Hall effect sensors for microbead detection. J Appl Phys (in press)

  • Mihajlović G, Aledealat K, Xiong P, von Molnár S, Field M, Sullivan GJ (2007) Magnetic characterization of a single superparamagnetic bead by phase-sensitive micro-Hall magnetometry. Appl Phys Lett 91(17):172518

    Article  Google Scholar 

  • Mohsin SA, Sheikh NM, Abbas W (2009) MRI induced heating of artificial bone implants. J Electromagnet Wave 23:799–808

    Article  Google Scholar 

  • Novosad V, Guslienko KY, Shima H, Otani Y, Fukamichi K, Kikuchi N, Kitakami O, Shimada Y (2001) Nucleation and annihilation of magnetic vortices in submicron ferromagnetic dots. IEEE Trans Magn 374:2088–2090

    Article  Google Scholar 

  • Novosad V, Fradin FY, Roy PE, Buchanan K, Guslienko KY, Bader SD (2005) Magnetic vortex resonance in patterned ferromagnetic dots. Phys Rev B 72:024455

    Article  Google Scholar 

  • O’Brien L et al (2011) Tunable remote pinning of domain walls in magnetic nanowires. Phys Rev Lett 106:087204

    Article  Google Scholar 

  • Panchal V, Cox D, Yakimova R, Kazakova O (2013) Epitaxial graphene sensors for detection of small magnetic moments. IEEE Trans Magn 49:97–100

    Google Scholar 

  • Panchal V, Lartsev A, Manzin A, Yakimova R, Tzalenchuk A, Kazakova O (2014) Visualisation of edge effects in side-gated graphene nanodevices. Sci Rep 4:5881

    Article  CAS  Google Scholar 

  • Pennes HH (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1:93–122

    CAS  Google Scholar 

  • Powell J, Papadaki A, Hand J, Hart A, McRobbie D (2012) Numerical simulation of SAR induced around Co-Cr-Mo hip prostheses in situ exposed to RF Fields associated with 1.5 and 3 T MRI body coils. Magn Reson Med 68:960–968

    Article  CAS  Google Scholar 

  • Rajkumar RK, Manzin A, Cox DC, Silva SRP, Tzalenchuk A, Kazakova O (2013) 3-D mapping of sensitivity of graphene Hall devices to local magnetic and electrical fields. IEEE Trans Magn 49:3445–3448

    Article  CAS  Google Scholar 

  • Rajkumar RK, Asenjo A, Panchal V, Manzin A, Iglesias-Freire O, Kazakova O (2014) Magnetic scanning gate microscopy of graphene Hall devices. J Appl Phys 115:172606

    Article  Google Scholar 

  • Rozhkova EA, Novosad V, Kim DH, Pearson J, Divan R, Rajh T, Bader SD (2009) Ferromagnetic microdisks as carriers for biomedical application. J Appl Phys 105: 07B306

  • Sanchez-Lopez H, Zilberti L, Bottauscio O, Hand J, Papadaki A, Tang F, Chiampi M, Crozier S (2014) Heating of bilateral hip prostheses in a human body model induced by a multi-axis gradient coil set, Proceedings Joint Annual Meeting ISMRM, Milan (Italy). ISSN 1545-4428: 4878

  • Schaefers G, and Kugel H (2005) A basic investigation of heating effects on total hip prostheses in combination with a simulated skin contact of the inner thighs during magnetic resonance imaging (MRI) with an 1.5 Tesla MR system. Proc ISMRM Workshop on MRI Safety: Update, Practical Information and Future Implications, McClean, Virginia, USA

  • Stenschke J, Li D, Thomann M, Schaefers G, Zylka W (2007) A numerical investigation of RF heating effect on implants during MRI compared to experimental measurements. Adv Med Eng 114(1):53–58

    Article  Google Scholar 

  • Tamanaha CR, Mulvaney SP, Rife JC, Whitman LJ (2008) Magnetic labeling, detection, and system integration. Biosens Bioelectron 24:1–13

    Article  CAS  Google Scholar 

  • Tang CC, Li MY, Li LJ, Chi CC, Chen JC (2011) Characteristics of a sensitive micro-Hall probe fabricated on chemical vapor deposited graphene over the temperature range from liquid-helium to room temperature. Appl Phys Lett 99:112107

    Article  Google Scholar 

  • Tiberto P, Boarino L, Celegato F, De Leo N, Coïsson M, Vinai F, Allia P (2010) Magnetic and magnetotransport properties of arrays of nanostructured antidots obtained by self-assembling polystyrene nanosphere lithography. J Appl Phys 107: 09B502

  • Voigt T, Homann H, Katscher U, Doessel O (2012) Patient-individual local SAR determination: in vivo measurements and numerical validation. Magn Reson Med 68(4):1117–1126

    Article  CAS  Google Scholar 

  • Wilkoff BL, Albert T, Lazebnik M, Park SM, Edmonson J et al (2013) Safe magnetic resonance imaging scanning of patients with cardiac rhythm devices: a role for computer modeling. Heart Rhythm 10(12):1815–1821

    Article  Google Scholar 

  • Xu H, Zhang Z, Shi R, Liu H, Wang Z, Wang S, Peng LM (2013) Batch-fabricated high-performance graphene Hall elements. Sci Rep 3:1207

    Google Scholar 

  • Zelinski AC, Goyal VK, Adalsteinsson E, Wald LL (2008) Fast, accurate calculation of maximum local N-gram Specific Absorption Rate. Proc Intl Soc Mag Reson Med 16: 1188

  • Zilberti L, Bottauscio O, Chiampi M, Hand J, Sanchez Lopez H, Crozier S (2014) Collateral thermal effect of MRI-LINAC gradient coils on metallic hip prostheses. IEEE Trans Magn 50(11): 5101704

Download references

Acknowledgments

The research activities here described were developed under two Joint Research Projects (JRP) of the European Metrology Research Programme: EMRP-HLT06 “Metrology for next-generation safety standards and equipment in MRI” (2012–2015) and EMRP-IND08 “Metrology for advanced industrial magnetics—MetMags” (2011–2014). EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. Funding was also received from the Italian MIUR project P7 “Metrology for therapeutic and diagnostic techniques based on electromagnetic radiation and ultrasound waves” (2014–2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oriano Bottauscio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrera, G., Borsero, M., Bottauscio, O. et al. Metrology to support therapeutic and diagnostic techniques based on electromagnetics and nanomagnetics. Rend. Fis. Acc. Lincei 26 (Suppl 2), 245–254 (2015). https://doi.org/10.1007/s12210-015-0386-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-015-0386-5

Keywords

Navigation