Skip to main content
Log in

Production of ions at high energy and its role in extraterrestrial environments

  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

Ions in space are formed in various ways, the relevance of which depends on the specific conditions of the considered extraterrestrial environment. The interaction of neutral molecules with cosmic rays, UV photons, X-rays and other phenomena such as shock waves are all important processes for their production. Once formed, ions are able to drive some chemistry that leads to molecular ions and, via dissociative recombination, molecules of increasing complexity. Therefore, ion-chemistry plays a pivotal role in the chemistry of the interstellar medium and upper planetary atmospheres (ionospheres). Molecular ions have also been detected in comet tails. In this paper, we briefly review experimental results obtained in our laboratory and concerning the formation of free ions in two different types of processes: double photoionization and collisional ionization induced by highly excited species (Penning ionization). A detailed characterization of these processes in laboratory experiments is of crucial importance to understand the chemistry of extraterrestrial environments. The double photoionization occurs when high energy photons are available and, as dications are generally metastable and rapidly decay into two fragment ions, contributes to the global budget of ion formation. The effects of Penning ionization have never been considered in modeling extraterrestrial objects so far, even though metastable helium is known to be formed by radiative recombination of He+ ions with electrons. Because helium is the second most abundant element of the Universe, Penning ionization of molecules by He*(23S1) is plausibly an active route of ionization in relatively dense environments exposed to cosmic rays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilar A, Brunetti BG, Gonzalez M, Vecchiocattivi F (1990a) A crossed beam study of the ionization of molecules by metastable neon atoms. Chem Phys 145:211

    Article  CAS  Google Scholar 

  • Aguilar A, Bianco S, Brunetti B, Gonzalez M, Vecchiocattivi F (1990b) Total cross-section for the ionization of molecules by thermal-energy collision with metastable neon atoms. Mol Phys 71:897

    Article  CAS  Google Scholar 

  • Alagia M, Boustimi M, Brunetti BG, Candori P, Falcinelli S, Richter R, Stranges S, Vecchiocattivi F (2002) Mass spectrometric study of double photoionization of HBr molecules. J Chem Phys 117:1098

    Article  CAS  Google Scholar 

  • Alagia M, Brunetti BG, Candori P, Falcinelli S, Moix Texidor M, Pirani F, Richter R, Stranges S, Vecchiocattivi F (2004a) Threshold-photoelectron-spectroscopy-coincidence study of the double photoionization of HBr. J Chem Phys 120:6980

    Article  CAS  Google Scholar 

  • Alagia M, Brunetti BG, Candori P, Falcinelli S, Moix Texidor M, Pirani F, Richter R, Stranges S, Vecchiocattivi F (2004b) Low-lying electronic states of HBr2+. J Chem Phys 120:6985

    Article  CAS  Google Scholar 

  • Alagia M, Biondini F, Brunetti BG, Candori P, Falcinelli S, Moix Texidor M, Pirani F, Richter R, Stranges S, Vecchiocattivi F (2004c) The double photoionization of HCl: an ion-electron coincidence study. J Chem Phys 121:10508

    Article  CAS  Google Scholar 

  • Alagia M, Brunetti BG, Candori P, Falcinelli S, Moix Texidor M, Pirani F, Richter R, Stranges S, Vecchiocattivi F (2006a) The double photoionization of hydrogen iodide molecules. J Chem Phys 124:204318

    Article  CAS  Google Scholar 

  • Alagia M, Candori P, Falcinelli S, Lavollée M, Pirani F, Richter R, Stranges S, Vecchiocattivi F (2006b) Double photoionization of N2O molecules in the 28–40 eV energy range. Chem Phys Lett 432:398

    Article  CAS  Google Scholar 

  • Alagia M, Candori P, Falcinelli S, Lavollée M, Pirani F, Richter R, Stranges S, Vecchiocattivi F (2007) Anisotropy of the angular distribution of fragment ions in dissociative double photoionization of N2O molecules in the 30–50 eV energy range. J Chem Phys 126:201101

    Article  CAS  Google Scholar 

  • Alagia M, Furlani C, Pirani F, Lavollée M, Richter R, Stranges S, Candori P, Falcinelli S, Vecchiocattivi F (2008) Determination of structural parameters from advanced molecular electronic spectroscopy: the double ionization of nitrous oxide by synchrotron radiation. Rend Lincei 19:215

    Article  Google Scholar 

  • Alagia M, Candori P, Falcinelli S, Lavollée M, Pirani F, Richter R, Stranges S, Vecchiocattivi F (2009) Double photoionization of CO2 molecules in the 34–50 eV energy range. J Phys Chem A 113:14755

    Article  CAS  Google Scholar 

  • Alagia M, Candori P, Falcinelli S, Lavollée M, Pirani F, Richter R, Stranges S, Vecchiocattivi F (2010) Dissociative double photoionization of CO2 molecules in the 36–49 eV energy range: angular and energy distribution of ion products. Phys Chem Chem Phys 12:5389

    Article  CAS  Google Scholar 

  • Alagia M, Candori P, Falcinelli S, Pirani F, Pedrosa Mundim MS, Richter R, Rosi M, Stranges S, Vecchiocattivi F (2011a) Dissociative double photoionization of benzene molecules in the 26–33 eV energy range. Phys Chem Chem Phys 13:8245

    Article  CAS  Google Scholar 

  • Alagia M, Candori P, Falcinelli S, Mundim MSP, Pirani F, Richter R, Rosi M, Stranges S, Vecchiocattivi F (2011b) Dissociative double photoionization of singly deuterated benzene molecules in the 26–33 eV energy range. J Chem Phys 135:144304

    Article  CAS  Google Scholar 

  • Alagia M, Candori P, Falcinelli S, Mundim KC, Mundim MSP, Pirani F, Richter R, Stranges S, Vecchiocattivi F (2012a) Lifetime and kinetic energy release of metastable dications dissociation. Chem Phys 398:134

    Article  CAS  Google Scholar 

  • Alagia M, Callegari C, Candori P, Falcinelli S, Pirani F, Richter R, Stranges S, Vecchiocattivi F (2012b) Angular distribution of fragment ions in dissociative double photoionization of acetylene molecules by linearly polarized light at 39 eV. J Chem Phys 136:204302

    Article  CAS  Google Scholar 

  • Albertí M, Lucas JM, Brunetti BG, Pirani F, Stramaccia M, Rosi M, Vecchiocattivi F (2000) Anisotropy effects in methyl chloride ionization by metastable neon atoms at thermal energies. J Phys Chem A 104:1405

    Article  Google Scholar 

  • Anand S, Schlegel HB (2005) Dissociation of benzene dication [C6H6 2+]: exploring the potential energy surface. J Phys Chem A 109:11551

    Article  CAS  Google Scholar 

  • Aquilanti V, Bartolomei M, Pirani F, Cappelletti D, Vecchiocattivi F, Shimizu Y, Kasai T (2005) Orienting and aligning molecules for stereochemistry and photodynamics. Phys Chem Chem Phys 7:291–300

    Article  CAS  Google Scholar 

  • Aquilanti V, Grossi G, Lombardi A, Maciel GS, Palazzetti F (2011) Aligned molecular collisions and a stereodynamical mechanism for selective chirality. Rend Lincei 22:125

    Article  Google Scholar 

  • Atkinson R, Baulch DL, Cox RA, Hampson RF, Kerr JA Jr, Troe J (1992) J Phys Chem Ref Data 21:1125; (1989) 18:881; (1984) 13:1259; (1982) 11:327; (1980) 9:295

  • Balucani N (2009) Elementary reactions and their role in gas-phase prebiotic chemistry. Int J Mol Sci 10:2304–2335

    Article  CAS  Google Scholar 

  • Balucani N (2012) Elementary reactions of N atoms with hydrocarbons: first steps towards the formation of prebiotic N-containing molecules in planetary atmospheres. Chem Soc Rev 41:5473–5483

    Article  CAS  Google Scholar 

  • Balucani N, Casavecchia P (2011) Crossed molecular beam studies of astronomically relevant bimolecular reactions. Rend Lincei 22:173

    Article  Google Scholar 

  • Balucani N, Bartocci A, Brunetti BG, Candori P, Falcinelli S, Palazzetti F, Pirani F, Vecchiocattivi F (2012) Collisional autoionization dynamics of Ne*(3P2,0)–H2O. Chem Phys Lett 546:34

    Article  CAS  Google Scholar 

  • Bartlett RJ (1981) Many-body perturbation theory and coupled cluster theory for electron correlation in molecules. Annu Rev Phys Chem 32:359

    Article  CAS  Google Scholar 

  • Bassi D, Falcinelli S, Pirani F, Rapaccini B, Tosi P, Vecchiocattivi F, Vecchiocattivi M (2003) The charge-excitation exchange process: He+(2S) + Ar*(3P) → He*(3,1S) + Ar+(2P). Int J Mass Spectr 223:327

    Article  Google Scholar 

  • Bates DR, Carson TR (1955) Doubly charged diatomic molecular ions. Proc Phys Soc A 68:1199

    Article  Google Scholar 

  • Bauschlicher CW Jr, Rosi M (1989) On the bonding in Be2(2 +). Chem Phys Lett 159:485

    Article  CAS  Google Scholar 

  • Bauschlicher CW Jr, Rosi M (1990) Addendum to on the bonding in Be2(2 +). Chem Phys Lett 165:501

    Article  CAS  Google Scholar 

  • Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  • Ben Arfa M, Lescop B, Cherid M, Brunetti BG, Candori P, Malfatti D, Falcinelli S, Vecchiocattivi F (1999) Ionization of ammonia molecules by collision with metastable neon atoms. Chem Phys Lett 308:71

    Article  CAS  Google Scholar 

  • Biondini F, Brunetti BG, Candori P, De Angelis F, Falcinelli S, Tarantelli F, Moix Teixidor M, Pirani F, Vecchiocattivi F (2005a) Penning ionization of N2O molecules by He*(23,1S) and Ne*(3P2,0) metastable atoms: a crossed beam study. J Chem Phys 122:164307

    Article  Google Scholar 

  • Biondini F, Brunetti BG, Candori P, De Angelis F, Falcinelli S, Tarantelli F, Pirani F, Vecchiocattivi F (2005b) Penning ionization of N2O molecules by He*(23,1S) and Ne*(3P2,0) metastable atoms: theoretical considerations about the intermolecular interactions. J Chem Phys 122:164308

    Article  Google Scholar 

  • Blyth RR, Delaunay R, Zitnik M, Krempasky J, Krempaska R, Slezak J, Prince KC, Richter R, Vondracek M, Camilloni R, Avaldi L, Coreno M, Stefani G, Furlani C, de Simone M, Stranges S, Adam MJ (1999) The high resolution Gas Phase Photoemission beamline, Elettra. J Electron Spectrosc Relat Phenom 101:959

  • Brunetti BG, Vecchiocattivi F (1993) Autoionization dynamics of collisional complexes. In: Ng CY (ed) “Cluster Ions”, current topics in ion chemistry and physics. Wiley, New York, pp 359–445

    Google Scholar 

  • Brunetti BG, Cambi R, Falcinelli S, Farrar JM, Vecchiocattivi F (1993) The dynamics of NeH+ production in Ne*(3P2,0)-HCl collisional autoionization. J Phys Chem 97:11877

    Article  CAS  Google Scholar 

  • Brunetti BG, Candori P, Ferramosche R, Falcinelli S, Vecchiocattivi F, Sassara A, Chergui M (1998) Penning ionization of C60 molecules. Chem Phys Lett 294:584

    Article  CAS  Google Scholar 

  • Brunetti BG, Candori P, Falcinelli S, Kasai T, Ohoyama H, Vecchiocattivi F (2001) Velocity dependence of the ionization cross section of methyl chloride molecules ionized by metastable argon atoms. Phys Chem Chem Phys 3:807

    Article  CAS  Google Scholar 

  • Brunetti BG, Candori P, Falcinelli S, Lescop B, Liuti G, Pirani F, Vecchiocattivi F (2006) Energy dependence of the Penning ionization electron spectrum of Ne*(3P2,0) + Kr. Eur Phys J D 38:21

    Article  CAS  Google Scholar 

  • Brunetti BG, Candori P, Cappelletti D, Falcinelli S, Pirani F, Stranges D, Vecchiocattivi F (2012) Penning ionization electron spectroscopy of water molecules by metastable neon atoms. Chem Phys Lett 539–540:19

    Article  Google Scholar 

  • Candori P, Falcinelli S, Pirani F, Tarantelli F, Vecchiocattivi F (2007) Interaction components in the hydrogen halide dications. Chem Phys Lett 436:322

    Article  CAS  Google Scholar 

  • Cappelletti D, Candori P, Falcinelli S, Albertì M, Pirani F (2012a) A molecular beam scattering investigation of methanol-noble gas complexes: characterization of the isotropic potential and insights into the nature of the interaction. Chem Phys Lett 545:14

    Article  CAS  Google Scholar 

  • Cappelletti D, Ronca E, Belpassi L, Tarantelli F, Pirani F (2012b) Revealing charge-transfer effects in gas-phase water chemistry. Acc Chem Res 45:1571–1580

    Article  CAS  Google Scholar 

  • Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  • Falcinelli S, Fernandez-Alonso F, Kalogerakis K, Zare RN (1996) Mass spectrometric detection of alkaline earth monohalide dications. Mol Phys 88:663

    Article  CAS  Google Scholar 

  • Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods. 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80:3265

    Article  CAS  Google Scholar 

  • Gonzales C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154

    Article  Google Scholar 

  • Gonzales C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94:5523

    Article  Google Scholar 

  • Indriolo N, Hobbs LM, Hinkle KH, McCall BJ (2009) Interstellar metastable helium absorption as a probe of the cosmic-ray ionization rate. Astrophys J 703:2131–2137

    Article  CAS  Google Scholar 

  • Kendall RA, Dunning TH, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796

    Article  CAS  Google Scholar 

  • Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650

    Article  CAS  Google Scholar 

  • Larsson M, Geppert WD, Nyman G (2012) Ion chemistry in space. Rep Prog Phys 75:066901

    Article  CAS  Google Scholar 

  • Legon AC (2010) The halogen bond: an interim perspective. Phys Chem Chem Phys 12:7736–7747

    Article  CAS  Google Scholar 

  • Lombardi A, Faginas Lago N, Laganà A, Pirani F, Falcinelli S (2012) A bond–bond portable approach to intermolecular interactions: simulations for N-methylacetamide and carbon dioxide dimers. Lecture Notes Comput Sci 7333 LNCS (Part 1):387–400

  • McClintock WE, Lankton MR (2007) The mercury atmospheric and surface composition spectrometer for the MESSENGER mission. Space Sci Rev 131:481–521

    Article  CAS  Google Scholar 

  • McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J Chem Phys 72:5639

    Article  CAS  Google Scholar 

  • Moix-Teixidor M, Pirani F, Candori P, Falcinelli S, Vecchiocattivi F (2003) Predicted structure and energetics of HCl2+. Chem Phys Lett 379:139

    Article  CAS  Google Scholar 

  • Mundim MSP, Candori P, Falcinelli S, Mundim KC, Pirani F, Vecchiocattivi (2012) A new statistical method for the determination of dynamical features of molecular dication dissociation processes. Lecture Notes Comput Sci 7333 LNCS (Part 1):432–446

  • Nicolaides CA (1989) Energy generation from volcanic ground states. Application to cold He2 2+. Chem Phys Lett 161:547

    Article  CAS  Google Scholar 

  • Olsen J, Jorgensen P, Koch H, Balkova A, Bartlett RJ (1996) Full configuration-interaction and state of the art correlation calculations on water in a valence double-zeta with polarization functions. J Chem Phys 104:8007

    Article  CAS  Google Scholar 

  • Pauling L (1933) The normal state of the helium molecule-ions He2+ and He2++. J Chem Phys 1:56

    Article  CAS  Google Scholar 

  • Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) A fifth-order perturbation comparison of electron correlation theories. Chem Phys Lett 157:479

    Article  CAS  Google Scholar 

  • Rosi M, Candori P, Falcinelli S, Mundim MSP, Pirani F, Vecchiocattivi (2012a) Theoretical and experimental study of the energy and structure of the fragment ions produced by double photoionization of benzene molecules. Lecture Notes Comput Sci 7333 LNCS (Part 1):316–330

  • Rosi M, Falcinelli S, Balucani N, Casavecchia P, Leonori F, Skouteris D (2012b) Theoretical study of reactions relevant for atmospheric models of titan: interaction of excited nitrogen atoms with small hydrocarbons. Lecture Notes Comput Sci 7333 LNCS (Part 1):331–344

  • Siska PE (1993) Molecular-beam studies of Penning ionization. Rev Mod Phys 65:337

    Article  CAS  Google Scholar 

  • Smith IWM, Rowe BR (2000) Reaction kinetics at very low temperatures: laboratory studies and interstellar chemistry. Acc Chem Res 33:261–268

    Article  CAS  Google Scholar 

  • Stauber P, Doty SD, van Dishoeck EF, Benz AO (2005) X-ray chemistry in the envelopes around young stellar objects. Astron Astrophys 440:949–966

    Article  CAS  Google Scholar 

  • Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculations of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  • Thissen R, Witasse O, Dutuit O, Wedlund CS, Gronoff G, Lilensten J (2011) Doubly-charged ions in the planetary ionospheres: a review. Phys Chem Chem Phys 13:18264

    Article  CAS  Google Scholar 

  • Tosi P, Correale R, Lu W, Falcinelli S, Basi D (1999) Production of the molecular dication ArN2+ in the reaction Ar2++N2. Phys Rev Lett 82:450

    Article  CAS  Google Scholar 

  • Vattuone L, Savio L, Pirani F, Cappelletti D, Okada M, Rocca M (2010) Interaction of rotationally aligned and oriented molecules in gas phase and at surfaces. Prog Surf Sci 85:92–160

    Article  CAS  Google Scholar 

  • Vuitton V, Dutuit O, Smith MA, Balucani N (2012) Titan surface, atmosphere and magnetosphere, Chap. 7. Cambridge University Press, Cambridge

  • Witasse O, Dutuit O, Lilensten J, Thissen R, Zabka J, Alcaraz C, Blelly PL, Bougher SW, Engel S, Andersen LH, Seiersen K (2002) Prediction of a CO2 2+ layer in the atmosphere of Mars. Geophys Res Lett 29:1263

    Article  Google Scholar 

  • Woon DE, Dunning TH (1993) Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminium through argon. J Chem Phys 98:1358

    Article  CAS  Google Scholar 

  • Woon DE, Dunning TH (1994) Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties. J Chem Phys 100:2975

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Vecchiocattivi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alagia, M., Balucani, N., Candori, P. et al. Production of ions at high energy and its role in extraterrestrial environments. Rend. Fis. Acc. Lincei 24, 53–65 (2013). https://doi.org/10.1007/s12210-012-0215-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-012-0215-z

Keywords

Navigation