Skip to main content
Log in

Micromechanically motivated constitutive model to characterize the hygrothermomechanical response of polymer electrolyte membrane

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

In this article, a micromechanically motivated constitutive model is presented for nafion membrane to capture the rate, temperature, and hydration dependency under monotonic and cyclic tensile loadings. The basic framework of this model is derived from the Arruda-Boyce viscoplastic model and is modified to include hygrothermal correction factors to show that this model can be manipulated to produce reliable results under various virtual testing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Bar-Cohen, Electroactive Polymer (EAP) Actuators as artificial muscles: Reality, potential, and challenge, second Ed., SPIE Press Monographs (PM136), Bellingham, WA (2004).

    Book  Google Scholar 

  2. Z. Cai, Y. Liu, S. Liu, L. Li and Y. Zhang, High performance Li-ion battery, Energy and Environmental Science, 5 (2012) 9007–9013.

    Article  Google Scholar 

  3. P. K. Singh, K. I. Kim, N. G. Park and H. W. Rhee, Dye Sensitized solar cell using polymer electrolytes based on poly(ethylene oxide) with an ionic liquid, Macromolecular Symposia, 249–250 (2007) 162–166.

    Article  Google Scholar 

  4. K. Schmidt-Rohr and Q. Chen, Parallel cylindrical water nanochannels in nafion fuel-cell membranes, Nature materials, 7 (2008) 75–83.

    Article  Google Scholar 

  5. S. J. Kim, S. H. Ko, K. H. Kang and J. Han, Direct seawater desalination by ion concentration polarization, Nature Nanotechnology, 5 (2010) 297–301.

    Article  Google Scholar 

  6. R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zeleney, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J. E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K.-I. Kimijima and N. Iwashita, Scientific aspects of polymer electrolyte fuel cell durability and degradation, Chem. Rev, 107 (2007) 3904–3951.

    Article  Google Scholar 

  7. X. Huang, R. Solasi, Y. Zou, M. Feshler, K. Reifsnider, D. Condit, S. Burlatsky and T. Madden, Mechanical endurance of polymer electrolyte membrane and PEM fuel cell durability, Journal of polymer science: Part B: Polymer physics, 44 (2006) 2346–2357.

    Article  Google Scholar 

  8. S. Kim, B. K. Ahn and M. M. Mench, Physical degradation of membrane electrode assemblies undergoing freeze/thaw cycling: Diffusion media effects, Journal of Power Sources, 173 (2008) 140–146.

    Google Scholar 

  9. A. Kusoglu, M. H. Santare and A. M. Karlsson, Aspects of fatigue failure mechanisms in polymer fuel cell membranes, Journal of Polymer Science Part B: Polymer Physics, 49 (2011) 1506–1517.

    Article  Google Scholar 

  10. A. Z. Weber and J. Newman, A theoretical study of membrane constraint in polymer-electrolyte fuel cells, AIChE Journal, 50 (12) (2004) 3215–3226.

    Article  Google Scholar 

  11. A. Kusoglu, A. M. Karlsson, M. H. Santare, S. Cleghorn and W. B. Johnson, Mechanical response of fuel cell membranes subjected to a hygro-thermal cycle, Journal of Power Sources, 161 (2006) 987–96.

    Article  Google Scholar 

  12. R. Solasi, Y. Zou, X. Huang, K. Reifsnider and D. Condit, On mechanical behavior and in-plane modeling of constrained PEM fuel cell membranes subjected to hydration and temperature cycles, Journal of Power Sources, 167 (2007) 366–377.

    Article  Google Scholar 

  13. R. Solasi, Y. Zou, X. Huang and K. Reifsnider, A time and hydration dependent viscoplastic mdoel for polyelectrolyte membranes in fuel cells, Mechanics of Time Dependent Materials, 12 (2008) 15–30.

    Article  Google Scholar 

  14. Y.-H. Lai, C. K. Mittelsteadt, C. S. Gittleman and D. A. Dillard, Viscoelastic stress analysis of constrained proton exchange membranes under humidity cycling, Journal of Fuel Cell Science and Technology, 6 (2009) 021002-1-13.

    Google Scholar 

  15. W. Yoon and X. Huang, A nonlinear viscoelastic-viscopalstic constitutive model for ionomer membranes in polymer electrolyte membrane fuel cells, Journal of power sources, 196 (2011) 3933–3941.

    Article  Google Scholar 

  16. M. N. Silberstein and M. C. Boyce, Constitutive modeling of the rate, temperature, and hydration dependent deformation response of nafion to monotonic and cyclic loading, Journal of Power Sources, 195 (2010) 5692–5706.

    Article  Google Scholar 

  17. E. M. Arruda and M. C. Boyce, Evolution of plastic anisotropy in amorphous polymers during finite straining, International Journal of Plasticity, 9 (1993) 697–720.

    Article  Google Scholar 

  18. E. M. Arruda and M. C. Boyce, Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers, Mechanics of Materials, 19 (1995) 193–212.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongdu Cho.

Additional information

Recommended by Associate Editor Moon Ki Kim

Chongdu Cho is a Fellow Professor in Department of Mechanical Engineering, Inha University, Incheon, South Korea. He received his Ph.D. in Mechanical Engineering from University of Michigan, Ann Arbor, U.S.A. His research areas include Solid Mechanics (Composite Material), CAE, MEMS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, C., Poornesh, K.K. & Kim, J. Micromechanically motivated constitutive model to characterize the hygrothermomechanical response of polymer electrolyte membrane. J Mech Sci Technol 29, 1145–1150 (2015). https://doi.org/10.1007/s12206-015-0226-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-015-0226-7

Keywords

Navigation