Skip to main content
Log in

A modeling study of mechanical energetic optimality in incline walking

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

To maintain steady level walking, collision loss is predominantly compensated for with push-off propulsion, and negligible additional work is performed during the single support phase. The observed energy balance during the double support phase is energetically optimal. However, unlike level walking, significant work proportional to the incline slope was observed during the single support phase, which raises the question of whether energetic optimality applies to incline walking. In this study, we examined the energetic optimality of incline walking using a simple work-energy relationship. Work performed by the leading and trailing leg over a gait cycle was estimated for various incline slopes, and the optimal push-off impulse that minimized the total work performed was calculated. The model prediction for least costly gait occurred when push-off propulsion provided all of the necessary work for raising or lowering the body center of mass (CoM) and collision compensation. When we assumed that the generation of optimal propulsion is gradually scaled to obey a feasible push-off constraint, which was estimated based on the allowable plantar flexor torque and the weight support of the trailing leg, the predicted slope-proportional increase in mechanical work done by the ground reaction force (GRF) during the single support phase was consistent with the empirical data. This result implies that the energetic optimality of incline walking can be described from a mechanical perspective and is subject to a feasible push-off propulsion constraint. However, the implication of the mechanical perspective of energetic optimality on the metabolic cost should be further examined and compared using empirical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. M. Donelan, R. Kram and A. D. Kuo, Simultaneous positive and negative external mechanical work in human walking, Journal of Biomechanics, 35 (2002) 117–124.

    Article  Google Scholar 

  2. J. M. Donelan, R. Kram and A. D. Kuo, Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking, The Journal of Experimental Biology, 205(23) (2002) 3717–3727.

    Google Scholar 

  3. A. Hernandez, A. Silder, B. C. Heiderscheit and D. G. Thelen, Effect of age on center of mass motion during human walking, Gait and Posture, 30 (2009) 217–222.

    Article  Google Scholar 

  4. J. Yeom and S. Park, A gravitational impulse model predicts collision impulse and mechanical work during a step-to-step transition, Journal of Biomechanics, 44(1) (2011) 59–67.

    Article  Google Scholar 

  5. S. Kim and S. Park, The oscillatory behavior of the CoM facilitates mechanical energy balance between push-off and heel strike, Journal of Biomechanics, 45 (2012) 326–333.

    Article  Google Scholar 

  6. A. D. Kuo, Energetics of actively powered locomotion using the simplest walking model, Journal of Biomechanical Engineering, 124(1) (2002) 113–120.

    Article  Google Scholar 

  7. A. Ruina, J. E. Bertram and M. Srinivasan, A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudoelastic leg behavior in running and the walk-to-run transition, J. Theor. Biol., 237(2) (2005) 170–192.

    Article  MathSciNet  Google Scholar 

  8. A. E. Minetti, L. P. Ardigo and F. Saibene, Mechanical determinants of gradient walking energetics in man, Journal of Physiology, 471 (1993) 725–735.

    Google Scholar 

  9. J. S. Gottschall and R. Kram, Mechanical energy fluctuations during hill walking: the effects of slope on inverted pendulum exchange, The Journal of Experimental Biology, 209 (2006) 4895–4900.

    Article  Google Scholar 

  10. J. R. Franz, N. E. Lyddon and R. Kram, Mechanical work performed by the individual legs during uphill and downhill walking, Journal of Biomechanics, 45 (2012) 257–262.

    Article  Google Scholar 

  11. M. Kuster, S. Sakurai and G. A. Wood, Kinematic and kinetic comparison of downhill and level walking, Clinical Biomechanics, 10(2) (1995) 79–84.

    Article  Google Scholar 

  12. A. S. McIntosh, K. T. Beatty, L. N. Dwan and D. R. Vickers, Gait dynamics on an inclined walkway, Journal of Biomechanics, 39 (2006) 2491–2502.

    Article  Google Scholar 

  13. P. G. Adamczyk and A. D. Kuo, Redirection of center-of-mass velocity during the step-to-step transition of human walking, The Journal of Experimental Biology, 212(16) (2009) 2668–2678.

    Article  Google Scholar 

  14. K. Oh, J. Baek and S. Park, Gait strategy changes with acceleration to accommodate the biomechanical constraint on push-off propulsion, Journal of Biomechanics, 45 (2012) 2920–2926.

    Article  Google Scholar 

  15. R. R. Neptune and K. Sasaki, Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed, The Journal of Experimental Biology, 208(5) (2005) 799–808.

    Article  Google Scholar 

  16. D. A. Cunningham, D. Morrison, C. L. Rice and C. Cooke, Ageing and isokinetic plantar flexion, European Journal of Applied Physiology, 56(1) (1987) 24–29.

    Article  Google Scholar 

  17. A. R. Fugl-Meyer, L. Gustafsson and Y. Burstedt, Isokinetic and static plantar flexion characteristics, European Journal of Applied Physiology, 45(2) (1980) 221–234.

    Article  Google Scholar 

  18. G. Thelen, A. B. Schultz, N. B. Alexander and J. A. Ashton-Miller, Effects of age on rapid ankle torque development, Journals of Gerontology Series A: Biological and Medical Sciences, 51(5) (1996) 226–232.

    Article  Google Scholar 

  19. S. Park, F. B. Horak and A. D. Kuo, Postural feedback responses scale with biomechanical constraints in human standing, Experimental Brain Research, 154 (2004) 417–427.

    Article  Google Scholar 

  20. S. Kim, F. B. Horak, P. Carlson-Kuhta and S. Park, Postural Feedback Scaling Deficits in Parkinson’s Disease, Journal of Neurophysiology, 102 (2009) 2910–2920.

    Article  Google Scholar 

  21. S. Kim, C. G. Atkeson and S. Park, Perturbation-dependent selection of postural feedback gain and its scaling, Journal of Biomechanics, 45 (2012) 1379–1386.

    Article  Google Scholar 

  22. H. M. Maus, S. W. Lipfert, M. Gross, J. Rummel and A. Seyfarth, Upright human gait did not provide a major mechanical challenge for our ancestors, Nature Communications, 1 (2010) doi: 10.1038/ncomms1073.

  23. J. Doke, J. M. Donelan and A. D. Kuo, Mechanics and energetics of swinging the human leg, The Journal of Experimental Biology, 208 (2005) 439–445.

    Article  Google Scholar 

  24. B. R. Umberger, Stance and swing phase costs in human walking, Journal of the Royal Society Interface, 7 (2010) 1329–1340.

    Article  Google Scholar 

  25. R. Neptune, S. A. Kautz and F. E. Zajac, Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking, Journal of Biomechanics, 34(11) (2001) 1387–1398.

    Article  Google Scholar 

  26. G. S. Sawicki and D. P. Ferris, Mechanics and energetics of level walking with powered ankle exoskeletons, The Journal of Experimental Biology, 211(9) (2008) 1402.

    Article  Google Scholar 

  27. S. Sawicki and D. P. Ferris, Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency, The Journal of Experimental Biology, 212(1) (2009) 21–31.

    Article  Google Scholar 

  28. P. Kao, C. L. Lewis and D. P. Ferris, Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton, Journal of Biomechanics, 43 (2010) 203–209.

    Article  Google Scholar 

  29. Park, H. Choi, K. Ryu, S. Kim and Y. Kim, Kinematics, kinetics and muscle activities of the lower extremity during the first four steps from gait initiation to the steady-state walking, Journal of Mechanical Science and Technology, 23 (2009) 204–211.

    Article  Google Scholar 

  30. J. H. Park and S. Chung, Optimal locomotion trajectory for biped robot’ D2’ with knees stretched, heel-contact landings, and toe-off liftoffs, Journal of Mechanical Science and Technology, 25(12) (2011) 3231–3241.

    Article  Google Scholar 

  31. T. L. Heiden, D. G. Lloyd and T. R. Ackland, Knee joint kinematics, kinetics and muscle co-contraction in knee osteoarthritis patient gait, Clinical Biomechanics, 24 (2009) 833–841.

    Article  Google Scholar 

  32. P. Mahaudens, X. Banse, M. Mousny and C. Detrembleur, Gait in adolescent idiopathic scoliosis: kinematics and electromyographic analysis, European Spine Journal, 18 (2009) 512–521.

    Article  Google Scholar 

  33. L. Peterson, S. A. Kautz and R. R. Neptune, Muscle work is increased in pre-swing during hemiparetic walking, Clinical Biomechanics, 26 (2011) 859–866.

    Article  Google Scholar 

  34. M. Seyedali, J. M. Czerniecki, D. C. Morgenroth and M. E. Hahn, Co-contraction patterns of trans-tibial amputee ankle and knee musculature during gait, Journal of NeuroEngineering and Rehabilitation, 9 (2012) doi:10.1186/1743-0003-1189-1129.

  35. R. R. Neptune, K. Sasaki and S. A. Kautz, The effect of walking speed on muscle function and mechanical energetics, Gait and Posture, 28(1) (2008) 135–143.

    Article  Google Scholar 

  36. G. S. Sawicki, C. L. Lewis and D. P. Ferris, It pays to have a spring in your step, Exercise and Sport Sciences Reviews, 37(3) (2009) 130–138.

    Article  Google Scholar 

  37. D. Chang, J. Kim, D. Choi, K. Cho, T. Seo and J. Kim, Design of a slider-crank leg mechanism for mobile hopping robotic platforms, Journal of Mechanical Science and Technology, 27(1) (2013) 207–214.

    Article  Google Scholar 

  38. D. M. Wanta, F. J. Nagle and P. Webb, Metabolic response to graded downhill walking, Medicine and Science in Sports and Exercise, 25 (1993) 159–162.

    Article  Google Scholar 

  39. L. C. Hunter, E. C. Hendrix and J. C. Dean, The cost of walking downhill: Is the preferred gait energetically optimal?, Journal of Biomechanics, 43 (2010) 1910–1915.

    Article  Google Scholar 

  40. H. C. Doets, D. Vergouw, H. E. Veeger and H. Houdijk, Metabolic cost and mechanical work for the step-to-step transition in walking after successful total ankle arthroplasty, Human Movement Science, 28(6) (2009) 786–797.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukyung Park.

Additional information

Recommended by Associate Editor Moon Ki Kim

Keonyoung Oh received his B.S. degree in Mechanical Engineering from Korea University in 2009 and M.S. degree in Mechanical Enginerring from KAIST, Korea in 2012. He is currently a Ph.D. student in the Department of Mechanical Engineering, KAIST, Korea. His research interests are in the area of Human Gait and Biomechanics.

Sukyung Park is a professor in the Dept. of Mechanical Engineering, KAIST, Korea. She received her B.S. degree in 1995 and M.S. degree in 1997, both from KAIST, Korea, and Ph.D. in 2002 from the University of Michigan, Ann Arbor. Her research interests are in the area of Biomechanics, Human Postural, Gait Control, and Biomimetics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, K., Ryu, JK. & Park, S. A modeling study of mechanical energetic optimality in incline walking. J Mech Sci Technol 28, 1393–1401 (2014). https://doi.org/10.1007/s12206-014-0126-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-014-0126-2

Keywords

Navigation