Skip to main content
Log in

Biodegradation of crude oil-contaminated soil using canned-food-industry wastewater sludge for soil application

  • Environmental Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the effects of crude oil (application doses of 0.5% and 5%) from hydrocarbon contamination on the removal of the Total Petroleum Hydrocarbons (TPH) from soil and to determine the removal of TPH at different temperatures (18°C and 28°C) during an incubation period of 240 days. The possible use of wastewater sludge as a biostimulating agent in crude oil-contaminated soils was also evaluated. The results of the 240 days of incubation indicated that the TPH removal percentages in crude oil-contaminated and sludge-treated soils at 18°C were 89% and 79%, for doses of 0.5 and 5%, respectively. Incubation at 28°C resulted in higher TPH removal with removal percentages of 83% (dose of 0.5%) and 91% (dose of 5%). The degradation of crude oil in contaminated soil treated with a 5% dose was significantly enhanced by the addition of wastewater sludge, whereas no apparent biostimulating effect on TPH removal was observed in the case of low-dose (0.5%) crude oil contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abioye, O. P., Abdul Aziz, A., and Agamuthu, P. (2009). “Stimulated biodegradation of used lubricating oil in soil using organic wastes.” Malaysian Journal of Science, Vol. 28, No. 2, pp. 127–133.

    Google Scholar 

  • Abioye, O. P., Abdul Aziz, A., and Agamuthu, P. (2010). “Enhanced biodegradation of used engine oil in soil amended with organic wastes.” Water Air and Soil Contamination, Vol. 209, No. 1, pp. 173–179, DOI: 10.1007/s11270-009-0189-3.

    Article  Google Scholar 

  • Agamuthu, P., Tan, Y. S., and Fauziah, S. H. (2013). “Bioremediation of hydrocarbon contaminated soil using selected organic wastes.” Procedia Environmental Sciences, Vol. 18, pp. 694–702, DOI: 10.1016/j.proenv.2013.04.094.

    Article  Google Scholar 

  • Anonymous (1998). Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WPCF Copyright by American Public Health Association, Washington, 1269p.

    MATH  Google Scholar 

  • Aronson Boethling, D. R., Howard, P., and Stiteler, W. (2006). “Estimating biodegradation half-lives for use in chemical screening.” Chemosphere, Vol. 63, No. 11, pp. 1953–1960, DOI: 10.1016/j.chemosphere. 2005.09.044.

    Article  Google Scholar 

  • Banks, M. K., Schwab, P., Liu, B., Kulakow, P. A., Smith, J. S., and Kim, R. (2003). “The effects of plants on the degradation and toxicity of petroleum contaminants in soil: A field assessment.” Adv. Biochem. Eng. Biotechnol., Vol. 78, No. 9, pp. 75–96, DOI: 10.1007/3-540-45991-X_3.

    Google Scholar 

  • Bremner, J. M. and Mulvaney, C. S. (1982). Nitrogen-Total. Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. Agronomy Monograph No:9 (2nd ed.) ASA-SSSA. Madison, Wisconsin. USA, 595–622

    Google Scholar 

  • Coulon, F., Pelletier, E., Gouhant, L., and Delille, D. (2005). “Effects of nutrient and temperature on degradation of petroleum hydrocarbons in contaminated sub-Antarctic soil.” Chemosphere, Vol. 58, No. 10, pp. 1439–1448, DOI: 10.1016/j.chemosphere.2004.10.007.

    Article  Google Scholar 

  • Das, N. and Chandran, P. (2011). “Microbial degradation of petroleum hydrocarbon contaminants: An overview.” Biotechnology Research International, Article ID941810, 13.

    Google Scholar 

  • Dimitrov, S., Pavlov, T., Nedelcheva, D., Reuschenbach, P., Silvani, M., Bias, R., Comber, M., Low, L., Lee, C., Parkerton, T., and Mekenyan, O. A. (2007). “Kinetic model for predicting biodegradation SAR QSAR.” Environ. Res., Vol. 18, Nos. 5-6, pp. 443–457.

    Google Scholar 

  • Dindar, E., Topaç Sagban, F. O., and Baskaya, H. S. (2015). “Variations of soil enzyme activities in petroleum-hydrocarbon contaminated soil.” International Biodeterioration& Biodegradation, Vol. 105, pp. 268–275, DOI: 10.1016/j.ibiod.2015.09.011.

    Article  Google Scholar 

  • Erdogan, E. and Karaca, A. (2011). “Bioremediation of crude oil polluted soil.” Asian Journal of Biotechnology, Vol. 3, No. 3, pp. 206–213, DOI: 10.3923/ajbkr.2011.206.213.

    Article  Google Scholar 

  • Gianfreda, L. and Rao, M. A. (2008). “Interactions between xenobiotics and microbial and enzymatic soil activity.” Critical Reviews in Environmental Science and Technology, Vol. 38, No. 4, pp. 269–310, DOI: 10.1080/10643380701413526.

    Article  Google Scholar 

  • Hesnawia, R. M. and Mogadam, F. S. (2013). “Bioremediation of libyan crude oil-contaminated soil under mesophilic and thermophilic conditions.” APCBEE Procedia, Vol. 5, pp. 82–87, DOI: 10.1016/j.apcbee.2013.05.015.

    Article  Google Scholar 

  • Ijah, U. J. J. and Safiyanu, H. (1997). “Microbial degradation of Escravos light crude oil in soil amended with chicken dropping and NPK fertilizer.” 10th Annual Conference of Biotechnology Society of Nigeria, 2nd -5th April 1997.

    Google Scholar 

  • Isaac, A. R. and Johnson, W. C. (1998). Elemental determination by inductively coupled plasma atomic spectrometry, In: Karla, Y.P. (ed) handbook of reference methods for plant analysis, CRC Pres, Washington, D.C., pp. 165–170.

    Google Scholar 

  • ISO 16703 (2004). Soil quality-Determination of content of hydrocarbon in the range C10-C40 by gas chromatography.

    Google Scholar 

  • Keeney, D. R. and Nelson, D. W. (1982). Nitrogen-Inorganic Forms, Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. Agronomy Monograph No:9 (2nd ed.) ASA-SSSA. Madison, Wisconsin. USA, pp. 643–693.

    Google Scholar 

  • Lee, K., Park, J. W., and Ahn, I. S. (2003). “Effect of additional carbon source on naphthalene biodegradation by Pseudomonas putida G7.” Journal of Hazardous Materials, Vol. 105, Nos. 1-3, pp. 157–167, DOI: 10.1016/j.jhazmat.2003.08.005.

    Article  Google Scholar 

  • Matthies, M., Witt, J., and Klasmeier, J. (2008). “Determination of soil biodegradation half lives from simulation testing under aerobic laboratory conditions: a kinetic model approach.” Environ. Poll., Vol. 156, pp. 99–105, DOI: 10.1016/j.envpol.2007.12.040.

    Article  Google Scholar 

  • McBride, M. B. (2003). “Toxic metals in sewage sludge-amended soils: has promotion of beneficial use discounted the risks?.” Advances in Environmental Research, Vol. 8, No. 1, pp. 5–19, DOI: 10.1016/S1093-0191(02)00141-7.

    Article  Google Scholar 

  • McLean, E. O. (1982). Soil pH and lime requirement, In: Page, A.L., Miller, R.H., Keeney, D.R. (Eds.), Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties, second ed. Am. Soc. Agron., Madison, WI, pp. 199–224.

    Google Scholar 

  • Moreno, J. L., Bastida, F., Ros, M., Hernández, T., and García, C. (2009). “Soil organic carbon buffers heavy metal contamination on semiarid soils: Effects of different metal threshold levels on soil microbial activity.” European Journal of Soil Biology, Vol. 45, No. 3, pp. 220–228, DOI: 10.1016/j.ejsobi.2009.02.004.

    Article  Google Scholar 

  • Nelson, D. W. an Sommers, L. E. (1982). Total Carbon, Organic Carbon and Organic Matter, Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. Agronomy Monograph No:9 (2nd ed.) ASA-SSSA. Madison, Wisconsin, USA, pp. 539–577.

    Google Scholar 

  • Okoh, A. I. (2006). “Biodegradation alternative in the cleanup of petroleum hydrocarbon contaminants.” Biotechnology and Molecular Biology Review, Vol. 1, No. 2, pp. 38–50.

    MathSciNet  Google Scholar 

  • Perfumo, A., Banat, I. M., Marchant, R., and Vezzulli, L. (2007). “Thermally enhanced approaches for bioremediation of hydrocarbon-contaminated soils.” Chemosphere, Vol. 66, No. 1, pp. 179–184, DOI: 10.1016/j.chemosphere.2006.05.006.

    Article  Google Scholar 

  • Plohl, K., Leskovsek, H., and Bricelj, M. (2001). “Biological degradation of motor oil in water.” Acta Chim. Slov., Vol. 49, pp. 279–289.

    Google Scholar 

  • Rhoades, J. D. (1982). Cation exchange capacity, In: Page, A.L., Miller, R.H., Keeney, D.R. (Eds.), Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties, second ed. Am. Soc. Agron., Madison, WI, pp. 149–158.

    Google Scholar 

  • Rowland, A. P, Lindley, D. K., Hall, G. H., Rossal, M. J., Wilson, D. R., Benhan, D. G., Harrison, A. F., and Daniels, R. E. (2000). “Effects of beach and sand properties,temperature and rainfall on the degradation rates of oil buried in oil/beach sand mixtures.” Environmental Contamination, Vol. 109, No. 1, pp. 109–118, DOI: 10.1016/S0269-7491(99)00224-9.

    Google Scholar 

  • Sang-Hwan, I., Seokho, I., Dae Yaeon, K., and Jeong-gyu, K. (2007). “Degradation characteristics of waste lubricants under different nutrient condition.” J. Hazard. Mater., Vol. 143, Nos. 1-2, pp. 65–72, DOI: 10.1016/j.jhazmat.2006.08.059.

    Article  Google Scholar 

  • Sarkar, D., Ferguson, M., Datta, R., and Birnbaum, S. (2005). “Bioremediation of petroleum hydrocarbons in contaminated soils: Comparison of biosolids addition, carbon supplementation, and monitored natural attenuation.” Environmental Pollution, Vol. 136, No. 1, pp. 187–195.

    Article  Google Scholar 

  • Sinkkonen, S. and Paasivirta, J. (2000). “Degradation half-times of PCDDs, PCDFs and PCBs for environmental fate modeling.” Chemosphere, Vol. 40, Nos. 9-11, pp. 943–949, DOI: 10.1016/S0045-6535(99)00337-9.

    Article  Google Scholar 

  • Venosa, A. D. and Zhu, X. (2003). “Biodegradation of crude oil contaminating marine shorelines and freshwater wetlands.” Spill Science and Technology Bulletin, Vol. 8, No. 2, pp. 163–178, DOI: 10.1016/S1353-2561(03)00019-7.

    Article  Google Scholar 

  • Walworth, J., Braddock, J., and Woolard, C. (2001). “Nutrient and temperature interactions in bioremediation of cryic soils.” Cold Regions Science and Technology, Vol. 32, Nos. 2-3, pp. 85–91, DOI: 10.1016/S0165-232X(00)00020-3.

    Article  Google Scholar 

  • Xu, R. and Obbard, J. (2003). “Effect of nutrient amendments on indigenous hydrocarbon biodegradation in oil contaminated beach sediments.” Journal of Environmental Quality, Vol. 32, No. 4, pp. 1234–1243, DOI: 10.2134/jeq2003.1234.

    Article  Google Scholar 

  • Yeung, P. Y., Johnson, R. L., and Xu, J. G. (1997). “Biodegradation of petroleum hydrocarbons in soil as affected by heating and forced aeration.” Journal of Environmental Quality, Vol. 26, No. 6, pp. 1511–1576, DOI: 10.2134/jeq1997.00472425002600060009x.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efsun Dindar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dindar, E., Topaç Şağban, F.O. & Başkaya, H.S. Biodegradation of crude oil-contaminated soil using canned-food-industry wastewater sludge for soil application. KSCE J Civ Eng 21, 1623–1630 (2017). https://doi.org/10.1007/s12205-016-1617-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-016-1617-8

Keywords

Navigation