Skip to main content
Log in

Identifying creep and destructuration related soil parameters by optimization methods

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

The paper aims to construct an efficient optimization method for identifying creep and destructuration related governing parameters of soft structured clay. An elastic viscoplastic model has been developed and adopted. Different optimization processes, by genetic algorithm or particle swarm optimization with uniform or random samplings initialization methods, are carried out to obtain the material parameters from conventional undrained triaxial tests performed on a K 0-concolidated natural soft clay. All comparisons demonstrate that the uniqueness of the solution is better guaranteed with the genetic algorithm rather than with the particle swarm optimization method. Furthermore, the efficiency of genetic algorithm has been verified by simulating other tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Biarez, J. and Hicher, P.-Y. (1994). Elementary mechanics of soil behaviour: Saturated remoulded soils, AABalkema.

  • Calvello, M. and Finno, R. J. (2004). “Selecting parameters to optimize in model calibration by inverse analysis.” Computers and Geotechnics, Vol. 31, No. 5, pp. 410–424, DOI: 10.1016/j.compgeo.2004.03.004.

    Article  Google Scholar 

  • Eberhart, R. C. and Kennedy, J. (1995). “A new optimizer using particle swarm theory.” In: Proceedings of the sixth international symposium on micro machine and human science, New York, NY, pp. 39–43.

    Chapter  Google Scholar 

  • Gens, A., Ledesma, A., and Alonso, E. (1996). “Estimation of parameters in geotechnical backanalysis-II. Application to a tunnel excavation problem.” Computers and Geotechnics, Vol. 18, No. 1, pp. 29–46.

    Article  Google Scholar 

  • John, H. (1992). Holland, Adaptation in natural and artificial systems, MIT Press, Cambridge, MA.

    Google Scholar 

  • Javadi, A. A., Rezania, M., and Nezhad, M. M. (2006). “Evaluation of liquefaction induced lateral displacements using genetic programming.” Computers and Geotechnics, Vol. 33, Nos. 4-5, pp. 222–233, DOI: 10.1016/j.compgeo.2006.05.001.

    Article  Google Scholar 

  • Karstunen, M. and Yin, Z. Y. (2010). “Modelling time-dependent behaviour of Murro test embankment.” Geotechnique, Vol. 60, No. 10, pp. 735–749.

    Article  Google Scholar 

  • Kennedy, J. and Eberchart, R. C. (1995). “Particle swarm optimization.” Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, pp. 1942–1948.

    Chapter  Google Scholar 

  • Knabe, T., Datcheva, M., Lahmer, T., Cotecchia, F., and Schanz, T. (2013). “Identification of constitutive parameters of soil using an optimization strategy and statistical analysis.” Computers and Geotechnics, Vol. 49, pp. 143–157, DOI: 10.1016/j.compgeo. 2012.10.002.

    Article  Google Scholar 

  • Lecampion, B., Constantinescu, A., and Nguyen Minh, D. (2002). “Parameter identification for lined tunnels in a viscoplastic medium.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 26, No. 12, pp. 1191–1211, DOI: 10.1002/nag.241

    Article  MATH  Google Scholar 

  • Leroueil, S., Kabbaj, M., Tavenas, F., and Bouchard, R. (1985). “Stressstrain-strain-rate relation for the compressibility of sensitive natural clays.” Géotechnique, Vol. 35, No. 2, pp. 159–180.

    Article  Google Scholar 

  • Levasseur, S., Malécot, Y., Boulon, M., and Flavigny, E. (2008). “Soil parameter identification using a genetic algorithm.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 32, No. 2, pp. 189–213, DOI: 10.1002/nag.614.

    Article  MATH  Google Scholar 

  • McKay, M. D., Beckman, R. J., and Conover, W. J. (1979). “Comparison of three methods for selecting values of input variables in the analysis of output from a computer code.” Technometrics, Vol. 21, No. 2, pp. 239–245.

    MathSciNet  MATH  Google Scholar 

  • Moreira, N., Miranda, T., Pinheiro, M., Fernandes, P., Dias, D., Costa, L., and Sena-Cruz, J. (2013). “Back analysis of geomechanical parameters in underground works using an Evolution Strategy algorithm.” Tunnelling and Underground Space Technology, Vol. 33, pp. 143–158.

    Article  Google Scholar 

  • Mostaghim, S. (2004). Multi-objective evolutionary algorithms: Data Structures, Convergence, and Diversity. Shaker.

    Google Scholar 

  • Pal, S. Wathugala G., and Kundu, S. (1996). “Calibration of a constitutive model using genetic algorithms.” Computers and Geotechnics, Vol. 19, No. 4, pp. 325–348.

    Article  Google Scholar 

  • Papon, A., Riou, Y., Dano, C., and Hicher, P. Y. (2012). “Single-and multi-objective genetic algorithm optimization for identifying soil parameters.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 36, No. 5, pp. 597–618, DOI: 10.1002/nag.1019.

    Article  Google Scholar 

  • Poles, S., Rigoni, E., and Robic, T. (2004). “MOGA-II performance on noisy optimization problems. In: International Conference on Bioinspired Optimization Methods and their applications.” BIOMA. Ljubljana, Slovena (Oct 2004).

    Google Scholar 

  • Poloni, C. and Pediroda, V. (1997). “GA coupled with computationally expensive simulations: tools to improve efficiency.” Genetic Algorithms and Evolution Strategies in Engineering and Computer Science, pp. 267–288.

    Google Scholar 

  • Rechea, C., Levasseur, S., and Finno, R. (2008). “Inverse analysis techniques for parameter identification in simulation of excavation support systems.” Computers and Geotechnics, Vol. 35, No. 3, pp. 331–345, DOI: 10.1016/j.compgeo.2007.08.008.

    Article  Google Scholar 

  • Reyes-Sierra, M. and Coello, C. C. (2006). “Multi-objective particle swarm optimizers: A survey of the state-of-the-art.” International Journal of Computational Intelligence Research, Vol. 2, No. 3, pp. 287–308.

    MathSciNet  Google Scholar 

  • Rocchi, G., Fontana, M., and Da Part, M. (2003). “Modelling of natural soft clay destruction processes using viscoplasticity theory.” Geotechnique, Vol. 53, No. 8, pp. 729–745.

    Article  Google Scholar 

  • Rokonuzzaman, M. and Sakai, T. (2010). “Calibration of the parameters for a hardening-softening constitutive model using genetic algorithms.” Computers and Geotechnics, Vol. 37, No. 4, pp. 573–579, DOI: 10.1016/j.compgeo.2010.02.007.

    Article  Google Scholar 

  • Shen, S.-L., Wu, H.-N., Cui, Y.-J., and Yin, Z.-Y. (2014). “Long-term settlement behaviour of metro tunnels in the soft deposits of Shanghai.” Tunnelling and Underground Space Technology, Vol. 40, pp. 309–323.

    Article  Google Scholar 

  • Sobol, I. M. (1967). “On the distribution of points in a cube and the approximate evaluation of integrals.” USSR Computational Mathematics and Mathematical Physics, Vol. 7, No. 4, pp. 86–112.

    Article  MathSciNet  MATH  Google Scholar 

  • Vardakos, S., Gutierrez, M., and Xia, C. (2012). “Parameter identification in numerical modeling of tunneling using the Differential Evolution Genetic Algorithm (DEGA).” Tunnelling and Underground Space Technology, Vol. 28, pp. 109–123.

    Article  Google Scholar 

  • Wang, L.-Z. and Yin, Z.-Y. (2012). “Stress dilatancy of natural soft clay under an undrained creep condition.” International Journal of Geomechanics, pp. A4014002, DOI: 10.1061/(ASCE) GM.1943-5622.0000271

    Google Scholar 

  • Wu, H.-N., Shen, S.-L., Ma, L., Yin, Z.-Y., and Horpibulsuk, S. (2014). “Evaluation of the strength increase of marine clay under staged embankment loading: A case study.” Marine Georesources & Geotechnology, DOI: 10.1080/1064119X.2014.954180

  • Yin, Z. Y. and Hicher, P. Y. (2008). “Identifying parameters controlling soil delayed behaviour from laboratory and in situ pressuremeter testing.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 32, No. 12, pp. 1515–1535.

    Article  MATH  Google Scholar 

  • Yin, Z. Y., Chang, C. S., Karstunen, M., and Hicher, P. Y. (2010). “An anisotropic elastic viscoplastic model for soft clays.” International Journal of Solids and Structures, Vol. 47, No. 5, pp. 665–677, DOI: 10.1016/j.ijsolstr.2009.11.004

    Article  MATH  Google Scholar 

  • Yin, Z. Y., Karstunen, M., Chang, C. S., Koskinen, M., and Lojander, M. (2011). “Modeling time-dependent behavior of soft sensitive clay.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 137, No. 11, pp. 1103–1113, DOI: 10.1061/(asce)gt.1943-5606.0000527

    Article  Google Scholar 

  • Yin, Z. Y., Karstunen, M., and Hicher, P. Y. (2010). “Evaluation of the influence of elasto-viscoplastic scaling functions on modelling timedependent behaviour of natural clays.” Soils and Foundations, Vol. 50, No. 2, pp. 203–214, DOI: 10.3208/sandf.50.203.

    Article  Google Scholar 

  • Yin, Z. Y. and Karstunen, M. (2011). “Modelling strain-rate-dependency of natural soft clays combined with anisotropy and destructuration.” Acta Mechanica Solida Sinica, Vol. 24, No. 3, pp. 216–230.

    Article  Google Scholar 

  • Yin, Z. Y. and Wang, J. H. (2012). “A one-dimensional strain-rate based model for soft structured clays.” Science China-Technological Sciences, Vol. 55, No. 1, pp. 90–100, DOI: 10.1007/s11431-011-4513-y.

    Article  Google Scholar 

  • Yin, Z.-Y., Yin, J.-H., and Huang, H.-W. (2015). “Rate-dependent and long-term yield stress and strength of soft wenzhou marine clay: Experiments and modeling.” Marine Georesources & Geotechnology, Vol. 33, No. 1, pp. 79–91.

    Article  Google Scholar 

  • Yao, Y. P., Lu, D. C., Zhou, A. N., and Zou, B. (2004). “Generalized non-linear strength theory and transformed stress space.” SCIENCE CHINA Technological Sciences, Vol. 47, No. 6, pp. 691–709.

    Article  MATH  Google Scholar 

  • Yao, Y. P., Sun, D. A., and Matsuoka, H. (2008). “A unified constitutive model for both clay and sand with hardening parameter independent on stress path.” Computers and Geotechnics, Vol. 35, No. 2, pp. 210–222.

    Article  Google Scholar 

  • Yao, Y. P., Hou, W., and Zhou, A. N. (2009). “UH model: three-dimensional unified hardening model for overconsolidated clays.” Geotechnique, Vol. 59, No. 5, pp. 451–469.

    Article  Google Scholar 

  • Zeng, L. L. (2010). Deformation mechanism and compression model of natural clays, (PHD thesis), Nanjing China, Southeast University.

    Google Scholar 

  • Zhang, Y., Gallipoli, D., and Augarde, C. (2013). “Parameter identification for elasto-plastic modelling of unsaturated soils from pressuremeter tests by parallel modified particle swarm optimization.” Computers and Geotechnics, Vol. 48, pp. 293–303, DOI: 10.1016/j.compgeo. 2012.08.004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Yu Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, YF., Yin, ZY., Riou, Y. et al. Identifying creep and destructuration related soil parameters by optimization methods. KSCE J Civ Eng 21, 1123–1134 (2017). https://doi.org/10.1007/s12205-016-0378-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-016-0378-8

Keywords

Navigation