Skip to main content
Log in

Numerical Simulation of Sloshing Motion in a Rectangular Tank using Differential Quadrature Method

  • Water Resources and Hydrologic Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

The numerical simulation of sloshing waves for Laplace equation with nonlinear free surface boundary condition in a two-dimensional (2D) rectangular tank is performed using the Differential Quadrature Method (DQM). Application of the DQM to the Laplace equation and the nonlinear free surface boundary condition gives two sets of Ordinary Differential Equations (ODEs) in time. These two sets of ODEs are coupled with each other and can be expressed as a system of nonlinear ODEs which can be further discretized in time using various time integration schemes. The resultant system of nonlinear algebraic equations can then be solved using various iterative methods. In this study, the backward difference time integration scheme (of order six) in conjunction with the Newton-Raphson method is used to solve the resultant system of nonlinear ODEs. The fast rate of convergence of the method is demonstrated and to verify its accuracy, comparison study with the available solutions in the literature is performed. Numerical results reveal that the DQM can be used as an effective tool for handling nonlinear sloshing problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akyildiz, H. and Unal, N. E. (2005). “Experimental investigation of pressure distribution on a rectangular tank due to the liquid sloshing.” Ocean Eng, Vol. 32, Nos. 11–12, pp. 150–1516, DOI: 10.1016/j.oceaneng.2004.11.006.

    Article  Google Scholar 

  • Akyildiz, H. and Unal, N. E. (2006). “Sloshing in a three-dimensional rectangular tank: Numerical simulation and experimental validation.” Ocean Engineering, Vol. 33, No. 16, pp. 2135–2149, DOI: 10.1016/j.oceaneng.2005.11.001.

    Article  Google Scholar 

  • Belakroum, R., Kadja, M., Mai, T. H., and Maalouf, C. (2010). “An efficient passive technique for reducing sloshing in rectangular tanks partially filled with liquid.” Mechanics Research Communications, Vol. 37, No. 3, pp. 341–346, DOI: 10.1016/j.mechrescom.2010.02.003.

    Article  MATH  Google Scholar 

  • Bellman, R. E. and Casti, J. (1971). “Differential quadrature and long term integration.” Journal of Mathematical Analysis and Applications, Vol. 34, No. 2, pp. 235–238, DOI: 10.1016/0022-247X(71)90110-7.

    Article  MathSciNet  MATH  Google Scholar 

  • Bellman, R. E., Kashef, B. G., and Casti, J. (1972). “Differential quadrature: A technique for the rapid solution of nonlinear partial differential equations.” Journal of Computational Physics, Vol. 10, No. 1, pp. 40–52, DOI: 10.1016/0021-9991(72)90089-7.

    Article  MathSciNet  MATH  Google Scholar 

  • Bert, C. W. and Malik, M. (1996a). “Differential quadrature method in computational mechanics: A review.” ASME Applied Mechanics Reviews, Vol. 49, No. 1, pp. 1–28, DOI: 10.1115/1.3101882.

    Article  Google Scholar 

  • Bert, C. W. and Malik, M. (1996b). “The differential quadrature method for irregular domains and application to plate vibration.” International Journal of Mechanical Sciences, Vol. 38, No. 6, pp. 589–606, DOI: 10.1016/S0020-7403(96)80003-8.

    Article  MATH  Google Scholar 

  • Celebi, M. S. and Akyildiz, H. (2002). “Nonlinear modeling of liquid sloshing in moving rectangular tank.” Ocean Engineering, Vol. 29, No. 12, pp. 1527–1553, DOI: 10.1016/S0029-8018(01)00085-3.

    Article  Google Scholar 

  • Chen, B. F. and Chiang, H. W. (2000). “Complete two-dimensional analysis of sea-wave-induced fully non-linear sloshing fluid in a rigid floating tank.” Ocean Engineering, Vol. 27, No. 9, pp. 953–977, DOI: 10.1016/S0029-8018(99)00036-0.

    Article  Google Scholar 

  • Chen, B. F. and Nokes, R. (2005). “Time-independent finite difference analysis of fully non-linear and viscous fluid sloshing in a rectangular tank.” Journal of Computational Physics, Vol. 209, No. 1, pp. 47–81, DOI: 10.1016/j.jcp.2005.03.006.

    Article  MATH  Google Scholar 

  • Chen, W., Haroun, M. A., and Liu, F. (1996). “Large amplitude liquid sloshing in seismically excited tanks.” Earthquake Engineering & Structural Dynamics, Vol. 25, No. 7, pp. 653–669, DOI: 10.1002/(SICI)1096-9845(199607).

    Article  Google Scholar 

  • Cho, J. R. and Lee, H. W. (2004). “Non-linear finite element analysis of large amplitude sloshing flow in two-dimensional tank.” International Journal for Numerical Methods in Engineering, Vol. 61, No. 4, pp. 514–531, DOI: 10.1002/nme.1078.

    Article  MathSciNet  MATH  Google Scholar 

  • Cho, J. R., Lee, H.W., and Ha, S. Y. (2005). “Finite element analysis of resonant sloshing response in 2D baffled container.” Journal of Sound and Vibration, Vol. 288, Nos. 4,5, pp. 829–845, DOI: 10.1016/j.jsv.2005.01.019.

    Article  Google Scholar 

  • Eftekhari, S. A. (2015). “A differential quadrature procedure with regularization of the Dirac-delta function for numerical solution of moving load problem.” Latin American Journal of Solids and Structures, Vol. 12, No. 7, pp. 1241–1265, DOI: 10.1590/1679-78251417.

    Article  Google Scholar 

  • Eftekhari, S. A. (2016a). “Pressure-based and potential-based mixed Ritz-differential quadrature formulations for free and forced vibration of Timoshenko beams in contact with fluid.” Meccanica, Vol. 51, No. 1, pp. 179–210, DOI: 10.1007/s11012-015-0198-9.

    Article  MathSciNet  MATH  Google Scholar 

  • Eftekhari, S. A. (2016b). “Pressure-based and potential-based differential quadrature procedures for free vibration of circular plates in contact with fluid.” Latin American Journal of Solids and Structures, Vol. 13, pp. 610–631, DOI: 10.1590/1679-78252321.

    Article  Google Scholar 

  • Eftekhari, S.A. (2016c). “A differential quadrature procedure for free vibration of circular membranes backed by a cylindrical fluid-filled cavity.” Journal of the Brazilian Society of Mechanical Sciences and Engineering, DOI: 10.1007/s40430-016-0561-3.

    Google Scholar 

  • Eftekhari, S. A. (2016d). “A modified differential quadrature procedure for numerical solution of moving load problem.” Journal of Mechanical Engineering Sciences, Vol. 230, No. 5, pp. 715–731, DOI: 10.1177/0954406215584630.

    Google Scholar 

  • Eftekhari, S. A. (2016e). “Differential quadrature procedure for in-plane vibration analysis of variable thickness circular arches traversed by a moving point load.” Applied Mathematical Modelling, Vol. 40, No. 7–8, pp. 4640–4663, DOI: 10.1016/j.apm.2015.11.046.

    Article  MathSciNet  Google Scholar 

  • Eftekhari, S. A. (2016f). “A differential quadrature procedure for linear and nonlinear steady state vibrations of infinite beams traversed by a moving point load.” Meccanica, Vol. 51, No. 10, pp 2417–2434, DOI: 10.1007/s11012-016-0373-7.

    Article  MathSciNet  MATH  Google Scholar 

  • Eftekhari, S. A. and Jafari, A. A. (2014). “A mixed modal-differential quadrature method for free and forced vibration of beams in contact with fluid.” Meccanica, Vol. 49, No. 3, pp. 535–564, DOI: 10.1007/s11012-013-9810-z.

    Article  MathSciNet  MATH  Google Scholar 

  • Eswaran, M., Virk, A. S., and Saha, U. K. (2013). “Numerical simulation of 2D and 3D sloshing waves in a regularly and randomly excited container.” Journal of Marine Science and Application, Vol. 12, No. 3, pp. 298–314, DOI: 10.1007/s11804-013-1194-x.

    Article  Google Scholar 

  • Faltinsen, O. M. (1978). “A numerical nonlinear method of sloshing in tanks with two-dimensional flow.” Journal of Ship Research, Vol. 22, No. 3, pp. 193–202.

    Google Scholar 

  • Faltinsen, O. M., Rognebakke, O.F., Lukovsky, I. A., and Timokha, A. N. (2000). “Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth.” Journal of Fluid Mechanics, Vol. 407, pp. 201–234, DOI: 10.1017/S0022112099007569.

    Article  MathSciNet  MATH  Google Scholar 

  • Faltinsen, O. M. and Timokha, A. (2001). “An Adaptive multimodal approach to nonlinear sloshing in a rectangular tank.” Journal of Fluid Mechanics, Vol. 432, pp. 167–200.

    MATH  Google Scholar 

  • Faltinsen, O. M. and Timokha, A. N. (2010). “A multimodal method for liquid sloshing in a two-dimensional circular tank.” Journal of Fluid Mechanics, Vol. 665, No. 25, pp. 457–479, DOI: 10.1017/S002211201000412X.

    Article  MathSciNet  MATH  Google Scholar 

  • Fantuzzi, N. (2014). “New insights into the strong formulation finite element method for solving elastostatic and elastodynamic problems.” Curved and Layered Structures, Vol. 1, pp. 93–126, DOI: 10.2478/cls-2014-0005.

    Google Scholar 

  • Fantuzzi, N., Tornabene, F., and Viola, E. (2014b). “Generalized differential quadrature finite element method for vibration analysis of arbitrarily shaped membranes.” International Journal of Mechanical Sciences, Vol. 79, pp. 216–251, DOI: 10.1016/j.ijmecsci.2013.12.008.

    Article  Google Scholar 

  • Fantuzzi, N., Tornabene, F., Viola, E., and Ferreira, A. J. M. (2014a). “A Strong Formulation Finite Element Method (SFEM) based on RBF and GDQ techniques for the static and dynamic analyses of laminated plates of arbitrary shape.” Meccanica, Vol. 49, No. 10, pp. 2503–2542, DOI: 10.1007/s11012-014-0014-y.

    Article  MathSciNet  MATH  Google Scholar 

  • Frandsen, J. B. (2004). “Sloshing motions in excited tanks.” Journal of Computational Physics, Vol. 196, No. 1, pp. 53–87, DOI: 10.1016/j.jcp.2003.10.031.

    Article  MATH  Google Scholar 

  • Frandsen, J. B. and Borthwick, A. G. L. (2003) “Simulation of sloshing motions in fixed and vertically excited containers using a 2-D inviscid s-transformed finite difference solver.” Journal of Fluids and Structures, Vol. 18, No. 2, pp. 197–214, DOI: 10.1016/j.jfluidstructs.2003.07.004.

    Article  Google Scholar 

  • Graham, E. W. and Rodriquez, A. M. (1952). “Characteristics of fuel motion which affect airplane dynamics.” ASME Journal of Applied Mechanics, Vol. 19, No. 3, pp. 381–388.

    Google Scholar 

  • Housner, G. W. (1957). “Dynamic pressures on accelerated fluid containers.” Bulletin of the Seismological Society of America, Vol. 47, No. 1, pp. 15–35.

    Google Scholar 

  • Housner, G. W. (1963). “The dynamic behavior of water containers.” Bulletin of the Seismological Society of America, Vol. 53, No. 2, pp. 381–387.

    Google Scholar 

  • Jung, J. H., Yoon, H. S., Lee, C. Y., and Shin, S. C. (2012). “Effect of the vertical baffle height on the liquid sloshing in a three-dimensional rectangular tank.” Ocean Engineering, Vol. 44, pp. 79–89, DOI: 10.1016/j.oceaneng.2012.01.034.

    Article  Google Scholar 

  • Ketabdari, M. J. and Saghi, H. (2013a). “Parametric study for optimization of storage tanks considering sloshing phenomenon using coupled BEM–FEM.” Applied Mathematics and Computation, Vol. 224, pp. 123–139, DOI: 10.1016/j.amc.2013.08.036.

    Article  MathSciNet  MATH  Google Scholar 

  • Ketabdari, M. J. and Saghi, H. (2013b). “Numerical study on behavior of the trapezoidal storage tank to liquid sloshing impact.” International Journal of Computational Methods, Vol. 10, No. 6, pp. 1350046, DOI: 10.1142/S0219876213500461.

    Article  MathSciNet  MATH  Google Scholar 

  • Kolukula, S. S. and Chellapandi, P. (2013). “Nonlinear finite element analysis of sloshing.” Advances in Numerical Analysis, Vol. 2013, pp. 571528, DOI: 10.1155/2013/571528.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, D. and Lin, P. (2008). “A numerical study of three-dimensional liquid sloshing in tanks.” Journal of Computational Physics, Vol. 227, No. 8, pp. 3921–3939, DOI: 10.1016/j.jcp.2007.12.006.

    Article  MATH  Google Scholar 

  • Liu, D. and Lin, P. (2009). “Three-dimensional liquid sloshing in a tank with baffles.” Ocean Engineering, Vol. 36, No. 2, pp. 202–212, DOI: 10.1016/j.oceaneng.2008.10.004.

    Article  Google Scholar 

  • Luo, Z.-Q. and Chen, Z.-M. (2011). “Sloshing simulation of standing wave with time-independent finite difference method for Euler equations.” Applied Mathematics and Mechanics, Vol. 32, No. 11, pp. 1475–1488, DOI: 10.1007/s10483-011-1516-6.

    Article  MathSciNet  MATH  Google Scholar 

  • Nakayama, T. and Washizu, K. (1980). “Nonlinear analysis of liquid motion in a container subjected to forced pitching oscillation.” International Journal for Numerical Methods in Engineering, Vol. 15, No. 8, pp. 1207–1220, DOI: 10.1002/nme.1620150808.

    Article  MathSciNet  MATH  Google Scholar 

  • Nakayama, T. and Washizu, K. (1981). “The boundary element method applied to the analysis of two-dimensional nonlinear sloshing problems.” International Journal for Numerical Methods in Engineering, Vol. 17, No. 11, pp. 1631–1646, DOI: 10.1002/nme.1620171105.

    Article  MATH  Google Scholar 

  • Panigrahy, P. K., Saha, U. K., and Maity, D. (2009). “Experimental studies on sloshing behavior due to horizontal movement of liquids in baffled tanks.” Ocean Engineering, Vol. 36, Nos. 3–4, pp. 213–222, DOI: 10.1016/j.oceaneng.2008.11.002.

    Article  Google Scholar 

  • Quan, J. R. and Chang, C. T. (1989). “New insights in solving distributed system equations by the quadrature methods, Part I: Analysis.” Computers & Chemical Engineering, Vol. 13, No. 7, pp. 779–788, DOI: 10.1016/0098-1354(89)85051-3.

    Article  Google Scholar 

  • Saghi, H. and Ketabdari, M. J. (2012). “Numerical simulation of sloshing in rectangular storage tank using coupled FEM-BEM.” Journal of Marine Science and Application, Vol. 11, No. 4, pp. 417–426, DOI: 10.1007/s11804-012-1151-0.

    Article  Google Scholar 

  • Sriram, V., Sannasiraj, S. A., and Sundar, V. (2006). “Numerical simulation of 2D sloshing waves due to horizontal and vertical random excitation.” Applied Ocean Research, Vol. 28, No. 1, pp. 19–32, DOI: 10.1016/j.apor.2006.01.002.

    Article  Google Scholar 

  • Tornabene, F., Fantuzzi, N., and Viola, E. (2015). “Strong formulation finite element method: A survey.” ASME Applied Mechanics Reviews, Vol. 67, No. 2, pp. 020801, DOI: 10.1115/1.4028859.

    Article  Google Scholar 

  • Wang, C. Z. and Khoo, B. C. (2005). “Finite element analysis of two-dimensional nonlinear sloshing problems in random excitations.” Ocean Engineering, Vol. 32, No. 2, pp. 107–133, DOI: 10.1016/j.oceaneng.2004.08.001.

    Article  Google Scholar 

  • Wu, G. X. and Taylor, R. E. (1994). “Finite element analysis of twodimensional nonlinear transient water waves.” Applied Ocean Research, Vol. 16, No. 6, pp. 363–372, DOI: 10.1016/0141-1187 (94)00029-8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Eftekhari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eftekhari, S.A. Numerical Simulation of Sloshing Motion in a Rectangular Tank using Differential Quadrature Method. KSCE J Civ Eng 22, 4657–4667 (2018). https://doi.org/10.1007/s12205-015-0672-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-015-0672-x

Keywords

Navigation