Skip to main content
Log in

Ranking sensitive calibrating parameters of UBC Watershed Model

  • Water Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Almost in all hydrological models, calibrating parameters are tuned to best match the simulated results with the observed. In the present study sensitivity analysis was carried on the fifteen calibrating parameters of University of British Columbia Watershed Model (UBCWM). The study focuses to impart information to the modelers while calibrating UBCWM. To achieve the objectives of the study, UBC Watershed Model was applied on Chitral watershed in Pakistan. UBC Watershed Model is a semi distributed Hydrological model which divides the entire watershed in several elevation bands. The model was calibrated for the year 2006 with the coefficient of efficiency as well as the coefficient of determination equal to 0.94. The numerical values of the calibrating parameters were changed by increasing 20% and then by decreasing 20% of the standard calibrated values one by one. Sensitivity of the model was evaluated by computing the Absolute Sensitivity Index for each parameter. The sensitivity analysis results showed that the P0SREPO as the most sensitive parameter with 3.31525 Absolute Sensitivity Index (ASI) whereas C0IMPA found to be least sensitive giving a value of 0.0452 as Absolute Sensitivity Index (ASI). The logical trends in the results of sensitivity analysis show the robustness of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bahremand, A. and De Smedt, F. (2008). “Distributed hydrological modeling and sensitivity analysis in Torysa watershed, Slovakia.” Water Resour. Manage., Vol. 22, No. 3, pp. 393–408, DOI: 10.1007/s11269-007-9168-x.

    Article  Google Scholar 

  • Beckers, J., Smerdon, B., and Wilson, M. (2009). Review of hydrologic models for forest management and climate change applications in British Columbia and Alberta, FORREX Forum for Research and Extension in Natural Resources, Kamloops, B.C.

    Google Scholar 

  • Beven, K. (1989). “Changing ideas in hydrology—The case of physically-based models.” Journal of Hydrology, Vol. 105, Issues 1–2, pp. 157–172, DOI: 10.1016/0022-1694(89)90101-7

    Article  Google Scholar 

  • Blasone, R. S. (2007). Parameter estimation and uncertainty assessment in hydrological modelling, PhD Thesis, Institute of Environment and Resources, Technical University of Denmark.

    Google Scholar 

  • Box, G. E. P. and Jenkins, G. M. (1976). Time series analysis: Forecasting and control, Holden-Day, Son-Fransisco.

    MATH  Google Scholar 

  • Cappelaere, B., Vieux, B. E., Peugeot, C., Maia, A., and Seguis, L. (2003). “Hydrologic process simulation of semiarid, endoreic catchment in Sahelian West Niger. 2. Model calibration and uncertanity characterization.” Journal of Hydrology, Vol. 279, Nos. 1–4, pp. 244–261, DOI: 10.1016/S0022-1694(03)00181-1

    Article  Google Scholar 

  • Fu, X, Chu, X., and Tan, G. (2010). “Sensitivity analysis for an infiltrationrunoff model with parameter uncertainty.” J. Hydrol. Eng., Vol. 15, No. 9, pp. 671–679, DOI.org/10.1061/(ASCE)HE.1943-5584.0000243.

    Article  Google Scholar 

  • Habib-ur-Rehman, Muhammad N., Herath, S., and Musiake, K. (2005). “Sensitivity analysis of a physically based distributed soil erosion and sediment transport model to its calibrating parameters.” Proceedings of the UET Research Journal, Lahore, Vol. 16, pp. 41–46.

    Google Scholar 

  • Hamby, D. M. (1994). “A review of techniques for parameter sensitivity analysis of environmental models.” Environ Monit Assess, Vol. 32, No. 2, pp. 135–154, DOI: org/10.1007/BF00547132.

    Article  Google Scholar 

  • IMP 5.0 (2004). Integrated method for power analysis natural resources, Victoria, B. C. V8V 2G6, Canada.

    Google Scholar 

  • Kamp, U. (1999). Late quaternary geomorphology and glaciation in the Eastern Hindu Kush, Chitral, Northern Pakistan, Berliner Geographische Studien, Berlin (in German).

    Google Scholar 

  • Khu, S.-T., Madsen, H., and Pierro, F. di. (2008). “Incorporating multiple observations for distributed hydrologic model calibration: An approach using a multi-objective evolutionary algorithm and clustering.” Advances in Water Resources, Vol. 31, No. 10, pp. 1387–1398, DOI: 10.1016/j.advwatres.2008.07.011

    Article  Google Scholar 

  • Lane, S. N. and Richards, K. S. (2001). “The ‘validation’ of hydrodynamic models: Some critical perspectives.” Model Validation: Perspectives in Hydrological Science, Wiley, Chichester, pp. 413–438.

    Google Scholar 

  • Lenhart, T., Eckhardt, K., Fohrer, N., and Frede, H. G. (2002). “Comparison of two different approaches of sensitivity analysis.” Phys Chem Earth, Vol. 27, No. 9, pp. 645–654, DOI: 10.1016/S1474-7065(02)00049-9.

    Article  Google Scholar 

  • Liu, Y. B., Batelaan, O., De Smedt, F., Poórová, J., and Velcická, L. (2005). “Automated calibration applied to a GIS based flood simulation Model using PEST.” Floods, from Defense to Management. Taylor-Francis, London, pp. 317–326, DOI: 10.1029/2005WR004436,2008.

    Google Scholar 

  • Möderl, M., Hellbach, C., Sitzenfrei, R., Mair, M., Lukas, A., Mayr, E., Perfler, R., and Rauch, W. (2001). “GIS based applications of sensitivity analysis for water distribution models.” 13th Annual Water Distribution Systems Analysis Symposium, pp. 129–136, DOI: 10.1061/41173(414)14.

    Google Scholar 

  • Moreau, P., Viaud, V., Parnaudeau, V., and Salmon-Monviola, J. (2013). “An approach for global sensitivity analysis of a complex environmental model to spatial inputs and parameters: A case study of an agrohydrological model.” Environmental Modelling and Software, Vol. 47, pp. 74–87, DOI: 10.1016/j.envsoft.2013.04.006.

    Article  Google Scholar 

  • Morrison, J., Quick, M. C., and Fereman, G. M. (2002). “Climate change in Fraser River watershed flow and temperature projections.” Journal of Hydrology, Vol. 263, Nos. 1–4, pp. 230–244, DOI: 10.1016/S0022-1694(02)00065-3.

    Article  Google Scholar 

  • Muleta, M. K. and Nicklow, J. W. (2004). “Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model.” J Hydrol, Vol. 306, Nos. 1–4, pp. 127–145, DOI: 10.1016/j.jhydrol.2004.09.005.

    Google Scholar 

  • Naeem, U. A., Hashmi, H. N., Shamim, M. S., and Ejaz, N. (2012). “Flow variations in Astore River under assumed glaciated extents due to climate change.” Pak J. Engg. and Appl. Sci, Vol. 11, pp. 73–81, ISSN 1995–1302.

    Google Scholar 

  • Naeem, U. A., Hashmi, H. N., Habib-ur-Rehman, and Sattar, A. S. (2013). “Flow trends in river Chitral due to different scenarios of glaciated extent.” KSCE Journal of Civil Engineering, KSCE, Vol. 17, No. 1, pp. 244–251, DOI: 10.1007/s12205-013-1978-1.

    Article  Google Scholar 

  • Nash, J. E. and Sutcliffe, J. V. (1970). “River flow forecasting through conceptual models. Part I-A, discussion of principles.” Journal of Hydrology, Elsevier, Vol. 10, No. 3, p. 282–290.

    Article  Google Scholar 

  • Quick, M. C. (1995). University of British Columbia watershed model manual version 4.0., Department of Civil Engineering, The University of British Columbia Vancouver Campus, B.C., Canada.

    Google Scholar 

  • Quick, M. C. and Pipes, A. (1972). “Daily and seasonal runoff forecasting with a water budget model.” Role of Snow and Ice in Hydrology Proceedings of the UNESCO/WMO/IAHS Symposium, Banff, pp. 1017–1034.

    Google Scholar 

  • Rabitz, H. (1989). “System analysis at molecular scale.” Science, Vol. 246, No. 4927, pp. 221–226, DOI: 10.1126/science.246.4927.221.

    Article  Google Scholar 

  • Refsgaard, J. C. (1997). “Parameterization, calibration and validation of distributed hydrologic models.” J. Hydrol., Vol. 198, Nos. 1–4, pp. 69–97, DOI: 10.1016/S0022-1694(96)03329-X.

    Article  Google Scholar 

  • Refsgaard, J. C. and Knudsen, J. (1996). “Operational validation and inter comparison of different types of hydrologic models.” Water Resour. Res., Vol. 32, No. 7, pp. 2189–2202, DOI: 10.1029/96WR00896.

    Article  Google Scholar 

  • Seabridge Gold Inc. (2012). KSM project UBC watershed modelling, Appendix 13-B.

    Google Scholar 

  • Senarath, S. U. S., Ogden, F. L., Downer, C. W., and Sharif, H. O. (2000). “On the calibration and verification of two dimensional, distributed, Hortonian, continuous watershed models.” Water Resour Res., Vol. 36, No. 6, pp. 1495–1510, DOI: 10.1029/2000WR900039.

    Article  Google Scholar 

  • Serena, R. B. (2007). Parameter estimation and uncertainty assessment in sydrological modelling, PhD Thesis, Institute of Environment Resources & Technical University of Denmark.

    Google Scholar 

  • Sieber, A. and Uhlenbrook, S. (2005). “Sensitivity analyses of a distributed catchment model to verify the model structure.” J. Hydrol., Vol. 310, Nos. 1–4, pp. 216–235, DOI: 10.1016/j.jhydrol.2005.01.004.

    Article  Google Scholar 

  • Singh, V. and Woolhiser, D. (2002). “Mathematical modelling of watershed hydrology.” J. Hydrol. Eng., Vol. 7, No. 4, pp. 270–292, DOI: 10.1061/(ASCE)1084-0699(2002)7:4(270).

    Article  Google Scholar 

  • Spear, R. C. and Hornberger, G. M. (1980). “Eutrophication in peel inlet, II. Identification of critical uncertianties via generalized sensitivity analysis.” Water Res, Vol. 14, No. 1, pp. 43–49, DOI: 10.1016/0043-1354(80)90040-8.

    Article  Google Scholar 

  • Technical Memorandum (2008). Comox lake water supply study phase 1- hydrology analysis, CH2MHILL.

    Google Scholar 

  • Van Dijk, P. M. (2001). Soil erosion and associated sediment supply to rivers, seasonal dynamics soil conservation measures and impacts of climate change, PhD Thesis, University Van Amsterdam.

    Google Scholar 

  • Water Survey of Canada (1972). Phase I report to the Prairie Provinces Water Board, Water Survey of Canada, Calgary.

    Google Scholar 

  • Water Survey of Canada (1973). User manual, ‘Sask. River’ runoff simulation model, Draft Report, Water Survey of Canada, Calgary.

    Google Scholar 

  • Zhan, C. S., Song, X. M., Xia, J., and Tong, C. (2013). “An efficient integrated approach for global sensitivity analysis of hydrological model parameters.” Environmental Modelling and Software, Vol. 41, pp. 39–52, DOI: 10.1016/j.envsoft.2012.10.009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usman Ali Naeem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naeem, U.A., Habib-ur-Rehman, Hashmi, H.N. et al. Ranking sensitive calibrating parameters of UBC Watershed Model. KSCE J Civ Eng 19, 1538–1547 (2015). https://doi.org/10.1007/s12205-015-0515-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-015-0515-9

Keywords

Navigation