Skip to main content
Log in

Semi-empirical and efficient solutions for FGPM hollow spheres in hygrothermal environment

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

This paper presents semi-analytical solutions for functionally graded piezoelectric hollow spheres. The hollow sphere is subjected to pressure on the boundary surface, electric potentials difference between the outer and inner surfaces, and uniform distribution of hygrothermal effect. It is assumed that the material properties of the sphere are graded in the radial direction according to a power law distribution of the volume fraction of the constituents. Some cases of boundary conditions are presented for stresses, electric potentials and displacement. Finally, numerical results for radial displacement, electric potential and stresses are carried out and discussed. The effects of different parameters are investigated. It can be concluded that the gradient of the material properties have particular influence in modern engineering design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allam, M. N. M. and Tantawy, R. (2011). “Thermomagnetic viscoelastic responses in functionally graded hollow structures.” Acta Mech. Sin., Vol. 27, No. 4, pp. 567–577, DOI: 10.1007/s10409-011-0467-3.

    Article  MathSciNet  MATH  Google Scholar 

  • Bahrami, A. and Nasier, A. (2007). “Interlaminar hygrothermal stresses in laminated plates.” Int. J. Solids Struct., Vol. 44, Nos. 25-26, pp. 8119–8142, DOI: 10.1016/j.ijsolstr.2007.06.004.

    Article  MATH  Google Scholar 

  • Dai, H.-L. and Wang, X. (2005). “Thermo-electro-elastic transient responses in piezoelectric hollow structures.” Int. J. Solids Struct., Vol. 42, Nos. 3-4, pp. 1151–1171, DOI: 10.1016/j.ijsolstr.2004.06.061.

    Article  MATH  Google Scholar 

  • Dai, H.-L., Fu, Y. M., and Yang, J. H. (2007). “Electromagnetoelastic behaviors of functionally graded piezoelectric solid cylinder and sphere.” Acta Mech. Sin., Vol. 23, No. 1, pp. 55–63, DOI: 10.1007/s10409-006-0047-0.

    Article  MATH  Google Scholar 

  • Dai, H.-L., Hong, L., Fu, Y. M., and Xiao, X. (2010a). “Analytical solution for electromagnetothermoelastic behaviors of a functionally graded piezoelectric hollow cylinder.” Appl. Math. Model., Vol. 34, No. 2, pp. 343–357, DOI: 10.1016/j.apm.2009.04.008.

    Article  MathSciNet  MATH  Google Scholar 

  • Dai, H.-L., Jiang, H. J., and Yang, L. (2012). “Time-dependent behaviors of a FGPM hollow sphere under the coupling of multi-fields.” Solid State Sci., Vol. 14, No. 5, pp. 587–597, DPI: 10.1016/j.solidstatesciences. 2012.02.011.

    Article  Google Scholar 

  • Dai, H.-L., Xiao, X., and Fu, Y. M. (2010b). “Analytical solutions of stresses in functionally graded piezoelectric hollow structures.” Solid State Commun., Vol. 150, Nos. 15-16, pp. 763–767, DOI: 10.1016/j.ssc.2010.01.028.

    Article  Google Scholar 

  • Ghorbanpour Arani, A., Kolahchi, R., and Mosallaie Barzoki, A. A. (2011). “Effect of material in-homogeneity on electro-thermo-mechanical behaviors of functionally graded piezoelectric rotating shaft.” Appl. Math. Model., Vol. 35, No. 6, pp. 2771–2789, DOI: 10.1016/j.apm.2010.11.076.

    Article  MathSciNet  MATH  Google Scholar 

  • Heyliger, P. (1997). “A note on the static behavior of simply-supported laminated piezoelectric cylinders.” Int. J. Solids Struct., Vol. 34, No. 29, pp. 3781–3794, DOI: 10.1016/S0020-7683(97)00009-7.

    Article  MATH  Google Scholar 

  • Lo, S. H., Zhen, W. U., Cheung, Y. K., and Wanji, C. (2010). “Hygrothermal effects on multilayered composite plates using a refined higher order theory.” Compos. Struct., Vol. 92, No. 3, pp. 633–646, DOI: 10.1016/j.compstruct.2009.09.034.

    Article  Google Scholar 

  • Loghman, A., Aleayoub, S. M. A., and Hasani Sadi, M. (2012). “Timedependent magnetothermoelastic creep modeling of FGM spheres using method of successive elastic solution.” Appl. Math. Model., Vol. 36, No. 2, pp. 836–845, DOI: 10.1016/j.apm.2011.07.038.

    Article  MathSciNet  MATH  Google Scholar 

  • Mendelson, A. (1968). Plasticity Theory and Applications, Macmillan, New York.

    Google Scholar 

  • Ootao, Y. and Tanigawa, Y. (2007). “Transient piezothermoelastic analysis for a functionally graded thermopiezoelectric hollow sphere.” Compos. Struct., Vol. 81, No. 4, pp. 540–549, DOI: 10.1016/j.compstruct.2006.10.002.

    Article  Google Scholar 

  • Patel, B. P., GanaPathi, M., and Makhecha, D. P. (2002). “Hygrothermal effect on the structural behavior of thick composite laminates using higher-order theory.” Compos. Struct., Vol. 56, No. 1, pp. 25–34, DOI: 10.1016/S0263-8223(01)00182-9.

    Article  Google Scholar 

  • Raja, S., Sinha, P. K., Prathap, G., and Dwarakanathan, D. (2004). “Influence of active stiffening on dynamic behavior of piezo-hygrothermo elastic composite plates and shell.” J. Sound Vib., Vol. 278, Nos. 1-2, pp. 257–283, DOI: 10.1016/j.jsv.2003.10.002.

    Article  Google Scholar 

  • Reddy, J. N. (2000). “Analysis of functionally graded plates”, Int. J. Numer. Meth. Eng., Vol. 47, Nos. 1-3, pp. 663–684, DOI: 10.1002/(SICI)1097-0207.

    Article  MATH  Google Scholar 

  • Reddy, J. N. and Cheng, Z. Q. (2001). “Three-dimensional thermomechanical deformations of functionally graded rectangular plates.” Eur. J. Mech. -A/Solids, Vol. 20, No. 5, pp. 841–855, DOI: 10.1016/S0997-7538(01)01174-3.

    Article  MATH  Google Scholar 

  • Reddy, J. N. and Chin, C. D. (1998). “Thermomechanical analysis of functionally graded cylinders and plates.” J. Therm. Stresses, Vol. 21, No. 6, pp. 593–626, DOI: 10.1080/01495739808956165.

    Article  Google Scholar 

  • Sinha, D. K. (1962). “Note on the radial deformation of a piezoelectric polarized spherical shell with symmetrical temperature distribution.” J. Acoust. Soc. Am., Vol. 34, No. 8, pp. 1073–1075, DOI: 10.1121/1.1918247.

    Article  Google Scholar 

  • Whiteny, J. M. and Ashton, J. E. (1971). “Effect of environment on the elastic response of layered composite plates.” AIAA J., Vol. 9, No. 9, pp. 1708–1713, DOI: 10.2514/3.49976.

    Article  Google Scholar 

  • Zenkour, A. M. (2005a). “A comprehensive analysis of functionally graded sandwich plates: Part 1 Deflection and stresses.” Int. J. Solids Struct., Vol. 42, Nos. 18-19, pp. 5224–5242, DOI: 10.1016/j.ijsolstr. 2005.02.015.

    Article  MATH  Google Scholar 

  • Zenkour, A. M. (2005b). “A comprehensive analysis of functionally graded sandwich plates: Part 2 Buckling and free vibration.” Int. J. Solids Struct., Vol. 42, Nos. 18-19, pp. 5243–5258, DOI: 10.1016/j.ijsolstr.2005.02.016.

    Article  MATH  Google Scholar 

  • Zenkour, A. M. (2006a). “Generalized shear deformation theory for bending analysis of functionally graded plates.” Appl. Math. Model., Vol. 30, No. 1, pp. 67–84, DOI: 10.1016/j.apm.2005.03.009.

    Article  MATH  Google Scholar 

  • Zenkour, A. M. (2006b) “Steady-state thermoelastic analysis of a functionally graded rotating annular disk.” Int. J. Struct. Stab. Dyna., Vol. 6, No. 4, pp. 1–16, DOI: 10.1142/S0219455406002064.

    MathSciNet  Google Scholar 

  • Zenkour, A. M. (2007) “Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded thick rectangular plate.” Arch. Appl. Mech., Vol. 77, No. 4, pp. 197–214, DOI: 10.1007/s00419-006-0084-y.

    Article  MATH  Google Scholar 

  • Zenkour, A. M. (2012a). “Hygrothermal analysis of exponentially graded rectangular plates.” J. Mech. Mater. Struct., Vol. 7, No. 7, pp. 687–700, DOI: 10.2140/jomms.2012.7.687.

    Article  Google Scholar 

  • Zenkour, A. M. (2012b). “Hygrothermal effects on the bending of angleply composite plates using a sinusoidal theory.” Compos. Struct., Vol. 94, No. 12, pp. 3685–3696, DOI: 10.1016/j.compstruct.2012. 05.033.

    Article  Google Scholar 

  • Zenkour, A. M., Elsibai, K. A., and Mashat, D. S. (2008). “Elastic and viscoelastic solutions to rotating functionally graded hollow and solid cylinders.” Appl. Math. Mech. (English Ed.), Vol. 29, No. 12, pp. 1601–1616, DOI: 10.1007/s10483-008-1208-x.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Zenkour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allam, M.N.M., Tantawy, R. & Zenkour, A.M. Semi-empirical and efficient solutions for FGPM hollow spheres in hygrothermal environment. KSCE J Civ Eng 20, 1958–1965 (2016). https://doi.org/10.1007/s12205-015-0057-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-015-0057-1

Keywords

Navigation