Skip to main content
Log in

Effect of Multiwall Carbon Nanotube contained in the Exfoliated Graphite anode on the power production and internal resistance of microbial fuel cells

  • Environmental Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

We fabricated Exfoliated Graphite (EG) anodes that are modified with different amounts of Multiwall Carbon Nanotube (MWCNT), and the effect of the MWCNT amount contained in the anode on the performance of Microbial Fuel Cells (MFCs) is examined. The MWCNT mixed with EG wraps the surface of EG planes consisting of the anode, and it enhances the electrochemical activities of the anode. The MWCNT on the anode surface catalyzes extracellular electron transfer to the anode, and it increases electrical conductivity of the anode by bridging the EG planes. The maximum power density of the MFC is increased with the increasing amount of the MWCNT in the EG anode. The power density of MFC with EG anode containing the MWCNT of 67% was 1,444 mW/m2, which is 140% higher than that of the control. The composite anode of EG and MWCNT is recommended as a good alternative for high performance MFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Carrero-Sanchez, J. C., Elías, L., Mancilla, R., Arrellín, G., Terrones, H., Laclette, J. P., and Terrones, M. (2006). “Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen.” Nano Letters, Vol. 6, No. 8, pp. 1609–1616.

    Article  Google Scholar 

  • Celzard, A., Mareche, J. F., and Furdin, G. (2005). “Modelling of exfoliated graphite.” Prog. Mater. Sci., Vol. 50, No. 1, pp. 93–179.

    Article  Google Scholar 

  • Chung, D. D. L. (1987). “Review exfoliation of graphite.” J. Mater. Sci., Issue 12, pp. 4190–4198.

    Google Scholar 

  • Clauwaert, P., Aelterman, P., Pham, T. H., Schamphelaire, L. D., Carballa, M., Rabaey, K., and Verstraete, W. (2008). “Minimizing losses in bio-electrochemical systems: The road to applications.” Appl. Microbiol. Biotechnol., Vol. 79, Issue 6, pp. 901–913.

    Article  Google Scholar 

  • Deng, Q., Li, X., Zuo, J., Ling, A., and Logan, B. E. (2010). “Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell.” J. Power Sources, Vol. 195, Issue 4, pp. 1130–1135.

    Article  Google Scholar 

  • Deng, S., Jian, G., Lei, J., Hu, Z., and Ju, H. (2009). “A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes.” Biosensors and Bioelectronics, Vol. 25, No. 2, pp. 373–377.

    Article  Google Scholar 

  • Hamelers, H. V. M., Heijne, A. T., Sleutels, T. H. J. A., Jeremiasse, A. W., Strik, D. P. B. T. B., and Buisman, C. J. N. (2010). “New applications and performance of bioelectrochemical systems.” Appl. Microbiol. Biotechnol., Vol. 85, Issue 6, pp. 1673–1685.

    Article  Google Scholar 

  • Hao, Yu, E., Cheng, S., Scott, K., and Logan, B. (2007). “Microbial fuel cell performance with non-Pt cathode catalysts.” J. Power Sources, Vol. 171, Issue 2, pp. 275–281.

    Article  Google Scholar 

  • Hou, J., Liu, J., Yang, S., and Zhou, Y. (2014). “Three-dimensional macroporous anodes based on stainless steel fiber felt for highperformance microbial fuel cells.” J. Power Sources, Vol. 258, 15 July, pp. 204–209.

    Article  Google Scholar 

  • Jia, N. Q., Wang, L. J., Liu, L., Liu, Q., and Jiang, Z. Y. (2005). “Bamboo-like CNx nanotubes for the immobilization of hemoglobin and its bioelectrochemistry.” Electrochemistry Communications, Vol. 7, Issue 4, pp. 349–354.

    Article  Google Scholar 

  • Kim, B. H., Chang, I. S., and Gadd, G. M. (2007). “Challenges in microbial fuel cell development and operation.” Appl. Microbiol. Biotechnol., Vol. 76, Issue 3, pp. 485–494.

    Article  Google Scholar 

  • Kumar, G. G., Sarathi, V. G. S., and Nahm, K. S. (2013). “Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells.” Biosens. Bioelectron, Vol. 43, 15 May, pp. 461–475.

    Article  Google Scholar 

  • Liang, P., Wang, H., Xia, X., Huang, X., Mo, Y., Cao, X., and Fan, M. (2011). “Carbon nanotube powders as electrode modifier to enhance the activity of anodic biofilm in microbial fuel cells.” Biosens. Bioelectron., Vol. 26, Issue 6, pp. 3000–3004.

    Article  Google Scholar 

  • Logan, B., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., and Rabaeey, K. (2006). “Microbial fuel cells: Methodology and technology.” Environ. Sci. Technol., Vol. 40, Issue 17, pp. 5181–5192.

    Article  Google Scholar 

  • Miao, M. (2011). “Electrical conductivity of pure carbon nanotube yarns.” Carbon, Vol. 49, Issue 12, pp. 3755–3761.

    Article  Google Scholar 

  • Peigney, A., Laurent, C., Flahaut, E., Bacsa, R. R., and Rousset, A. (2001). “Specific surface area of carbon nanotubes and bundles of carbon nanotubes.” Carbon, Vol. 39, Issue 4, pp. 507–514.

    Article  Google Scholar 

  • Rabaey, K. and Verstraete, W. (2005). “Microbial fuel cells: Novel biotechnology for energy generation.” Trends Biotechnol., Vol. 23, Issue 6, pp. 291–298.

    Article  Google Scholar 

  • Rodrigo, M. A., Canizares, P., Garcia, H., Linares, J. J., and Lobato, J. (2009). “Study of the acclimation stage and of the effect of the biodegradability on the performance of a microbial fuel.” Biores. Technol., Vol. 100, Issue 20, pp. 4704–4710.

    Article  Google Scholar 

  • Song, Y. C., Choi, T. S., Woo, J. H., Yoo, K. S., Chung, J. W., Lee, C. Y., and Kim, B.G. (2012). “Effect of the oxygen reduction catalyst loading method on the performance of air breathable cathodes for microbial fuel cells.” J. Appl. Electrochem., Vol. 42, Issue 6, pp. 391–398.

    Article  Google Scholar 

  • Song, Y. C., Woo, J. H., and Yoo, K. S. (2009). “Materials for microbial fuel cell: electrodes, separator and current collector.” J. Kor. Soc. Environ. Engineer., Vol. 31, Issue 9, pp. 579–586.

    Google Scholar 

  • Sun., J.-J., Zhao, H.-Z., Yang, Q.-Z., Song, J., and Xue, A. (2010). “A novel layer-by-layer self-assembled carbon nanotube-based anode: Preparation, characterization, and application in microbial fuel cell.” Electrochim. Acta, Vol. 55, Issue 9, pp. 3041–3047.

    Article  Google Scholar 

  • Tsai, H. Y., Wub, C. C., Lee, C. Y., and Shi, E. P. (2009). “Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes.” J. Power Sources, Vol. 194, Issue 1, pp. 199–205.

    Article  Google Scholar 

  • Wei, J., Liang, P., and Huang, X. (2011). “Recent progress in electrodes for microbial fuel cells.” Bioresour. Technol., Vol. 102, Issue 20, pp. 9335–9344.

    Article  Google Scholar 

  • Yan, J., Fan, Z., Wei, T., Qian, W., Zhang, M., and Wei, F. (2009). “Preparation of exfoliated graphite containing manganese oxides with high electrochemical capacitance by microwave irradiation.” Carbon, Vol. 47, Issue 14, pp. 3371–3374.

    Article  Google Scholar 

  • Yu, E. H., Cheng, S., Scott, K., and Logan, B. (2007). “Microbial fuel cell performance with non-Pt cathode catalysts.” J. Power Sources, Vol. 171, Issue 2, pp. 275–281.

    Article  Google Scholar 

  • Zhang, Y., Mo, G., Li, X., Zhang, W., Zhang, J., Ye, J., Huang, X., and Yu, C. (2011). A graphene modified anode to improve the performance of microbial fuel cells. J. Power Sources, Vol. 196, Issue 13, pp. 5402–5407.

    Article  Google Scholar 

  • Zhou, M., Chi, M., Luo, J., He, H., and Jin, T. (2011). “An overview of electrode materials in microbial fuel cells.” J. Power Sources, Vol. 196, Issue 10, pp. 4427–4435.

    Article  Google Scholar 

  • Zhou, M., Chi, M., Wang, H., and Jin, T. (2012). Anode modification by electrochemical oxidation: A new practical method to improve the performance of microbial fuel cells. Biochem. Eng. J., Vol. 60, Issue 15, pp. 151–155.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. C. Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y.C., Kim, D.S. & Woo, JH. Effect of Multiwall Carbon Nanotube contained in the Exfoliated Graphite anode on the power production and internal resistance of microbial fuel cells. KSCE J Civ Eng 19, 857–863 (2015). https://doi.org/10.1007/s12205-013-0643-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-013-0643-z

Keywords

Navigation