Skip to main content
Log in

A cell-based smoothed finite element method for three dimensional solid structures

  • Research Paper
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

This paper extends further the strain smoothing technique in finite elements to 8-noded hexahedral elements (CS-FEM-H8). The idea behind the present method is similar to the cell-based smoothed 4-noded quadrilateral finite elements (CS-FEM-Q4). In CSFEM, the smoothing domains are created based on elements, and each element can be further subdivided into 1 or several smoothing cells. It is observed that: 1) The CS-FEM using a single smoothing cell can produce higher stress accuracy, but insufficient rank and poor displacement accuracy; 2) The CS-FEM using several smoothing cells has proper rank, good displacement accuracy, but lower stress accuracy, especially for nearly incompressible and bending dominant problems. We therefore propose 1) an extension of strain smoothing to 8-noded hexahedral elements and 2) an alternative CS-FEM form, which associates the single smoothing cell issue with multi-smoothing cell one via a stabilization technique. Several numerical examples are provided to show the reliability and accuracy of the present formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belytschko, T. and Bendeman, L. P. (1993a). “Assumed strain stabilization of the eight node hexahedral element.” Computer Methods in Applied Mechanics and Engineering, Vol. 105, No. 2, pp. 225–260.

    Article  MATH  Google Scholar 

  • Belytschko, T., Ong, J. S., Liu, W. K., and Kennedy, J. M. (1984). “Hourglass control in linear and non-linear problems.” Computer Methods in Applied Mechanics and Engineering, Vol. 43, No. 3, pp. 251–276.

    Article  MATH  Google Scholar 

  • Bordas, S. and Natarajan, S. (2010). “On the approximation in the Smoothed Finite Element Method (SFEM).” International Journal for Numerical Methods in Engineering, Vol. 81, No. 5, pp. 660–670.

    MathSciNet  MATH  Google Scholar 

  • Bordas, S., Natarajan, S., Kerfriden, P., Augarde, C. E., Mahapatra, D. R., Rabczuk, T., and Pont, S. D. (2011). “On the performance of strain smoothing for quadratic and enriched finite element approximations (XFEM/GFEM/PUFEM).” International Journal for Numerical Methods in Engineering, Vol. 86, Nos. 4–5, pp. 637–666.

    Article  MATH  Google Scholar 

  • Bordas, S., Nguyen, V. P., Dunant, C., Nguyen-Dang, H., Guidoum, A. (2007). “An extended finite element library.” International Journal for Numerical Methods in Engineering, Vol. 71, No. 6, pp. 703–732.

    Article  MATH  Google Scholar 

  • Bordas, S., Rabczuk, T., Nguyen-Xuan, H., Nguyen Vinh, P., Natarajan, S., Bog, T., Do Minh, Q., and Nguyen Vinh, H. (2010). “Strain smoothing in FEM and XFEM.” Computers and Structures, Vol. 88, Nos. 23–24, pp. 1419–1443.

    Article  Google Scholar 

  • Bordas, S., Rabczuk, T., and Zi, G. (2008). “Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment.” Engineering Fracture Mechanics, Vol. 75, No. 5, pp. 943–960.

    Article  Google Scholar 

  • Cugnon, F. (2000). Automatisation des calculs éléments nis dans le cadre de la méthode-p, PhD Thesis, Unv. of Liège.

  • Dai, K.Y. and Liu, G. R. (2007b). “Free and forced vibration analysis using the smoothed finite element method (SFEM).” Journal Sound and Vibration, Vol. 301, Nos. 3–5, pp. 803–820.

    Article  Google Scholar 

  • Dai, K. Y., Liu, G. R., and Nguyen, T. T. (2007a). “An n-sided polygonal smoothed finite element method (nS-FEM) for solid mechanics.” Finite Elements in Analysis and Design, Vol. 43, Nos. 11–12, pp. 847–860.

    Article  MathSciNet  Google Scholar 

  • Duot, M. (2006). “A meshless method with enriched weight functions for three-dimensional crack propagation.” International Journal for Numerical Methods in Engineering, Vol. 65, No. 12, pp. 1970–2006.

    Article  Google Scholar 

  • Fraeijs de Veubeke, B. (2001). “Displacement and equilibrium models in the finite element Method. In ‘Stress analysis’, Zienkiewicz O.C., Holister, G. (eds.) John Wiley and Sons, 1965: Chapter 9 145–197.” Reprinted in International Journal for Numerical Methods in Engineering, Vol. 52, No. 3, pp. 287–342.

  • Fredriksson, M. and Ottosen, N. S. (2004). “Fast and accurate 4-node quadrilateral.” International Journal for Numerical Methods in Engineering, Vol. 61, No. 11, pp. 1809–1834.

    Article  MATH  Google Scholar 

  • Fredriksson, M. and Ottosen, N. S. (2007). “Accurate eight-node hexahedral element.” International Journal for Numerical Methods in Engineering, Vol. 72, No. 6, pp. 631–657.

    Article  MathSciNet  MATH  Google Scholar 

  • Gee, M. W., Dohrmann, C. R., Key, S. W., and Wall, W. A. (2009). “A uniform nodal strain tetrahedron with isochoric stabilization.” International Journal for Numerical Methods in Engineering, Vol. 78, No. 4, pp. 429–443.

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson, C. and Mercier, B. (1979). “Some equilibrium finite element methods for two-dimensional problems in continuum mechanics.” In: Energy methods in finite element analysis. Wiley-Interscience, Chichester, Sussex, England, pp. 213–224.

    Google Scholar 

  • Kelly, D. W. (1979). “Reduced integration to give equilibrium models for assessing the accuracy of finite element analysis.” In Proceedings of Third International Conference in Australia on FEM, University of New South Wales.

  • Kelly, D.W. (1980). “Bounds on discretization error by special reduced integration of the Lagrange family of finite elements.” International Journal for Numerical Methods in Engineering, Vol. 15, No. 10, pp. 1489–1560.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, G. R. (2008). “A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods.” International Journal of Computation Methods, Vol. 2, No. 2, pp. 199–236.

    Article  Google Scholar 

  • Liu, G. R., Dai, K. Y., and Nguyen, T. T. (2007a). “A smoothed finite element for mechanics problems.” Computational Mechanics, Vol. 39, No. 6, pp. 859–877.

    Article  MATH  Google Scholar 

  • Liu, G. R., Nguyen, T. T., Dai, K. Y., Lam, K. Y. (2007b). “Theoretical aspects of the smoothed finite element method (SFEM).” International Journal for Numerical Methods in Engineering, Vol. 71, No. 8, pp. 902–930.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, G. R., Nguyen-Thoi, T., Nguyen-Xuan, H., and Lam, K. Y. (2009a). “A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems.” Computer and Structures, Vol. 87, Nos. 1–2, pp. 14–26.

    Article  Google Scholar 

  • Liu, G. R., Nguyen-Thoi, T., and Lam, K. Y. (2009b). “An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids.” Journal of Sound and Vibration, Vol. 320, Nos. 4–5, pp. 1100–1130.

    Article  Google Scholar 

  • MacNeal, R. H. and Harder, R. L.(1985). “A proposed standard set of problems to test finite element accuracy.” Finite Elements in Analysis and Design, Vol. 1, No. 1, pp. 1–20.

    Article  Google Scholar 

  • Mijuca, D. and Berkovic, M. (1998). “On the efciency of the primalmixed finite element scheme.” Advances in Computational Structured Mechanics, Civil-Comp Press, pp. 61–69.

  • Nguyen, T. T., Liu, G. R., Dai, K. Y., and Lam, K. Y. (2007). “Selective smoothed finite element method.” Tsinghua Science and Technology, Vol. 12, No. 5, pp. 497–508.

    Article  MathSciNet  Google Scholar 

  • Nguyen, V. P., Rabczuk, T., Bordas, S., and Duot, M. (2008). “Meshfree methods: Review and key computer implementation aspects.” Mathematics and Computers in Simulation, Vol. 79, No. 3, pp. 763–813.

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen-Thanh, N., Rabczuk, T., Nguyen-Xuan, H., and Bordas. S. (2008). “A smoothed finite element method for shell analysis.” Computer Methods in Applied Mechanics and Engineering, Vol. 198, No. 2, pp. 165–177.

    Article  MATH  Google Scholar 

  • Nguyen-Thoi, T., Liu, G. R., Lam, K. Y., and Zhang, G. Y. (2009). “A face-based smoothed finite element method (FS-FEM) for 3d linear and nonlinear solid mechanics problems using 4-node tetrahedral elements.” International Journal for Numerical Methods in Engineering, Vol. 78, No. 3, pp. 324–353.

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen-Xuan, H., Bordas, S., and Nguyen-Dang, H. (2008a). “Smooth finite element methods: Convergence, accuracy and properties.” International Journal for Numerical Methods in Engineering, Vol. 74, No. 2, pp. 175–208.

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen-Xuan, H., Bordas, S., and Nguyen-Dang, H. (2009b). “Addressing volumetric locking and instabilities by selective integration in smoothed finite elements.” Communications in Numerical Methods in Engineering, Vol. 25, No. 1, pp. 19–34.

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen-Xuan, H., Liu, G. R., Nguyen-Thoi, T., and Nguyen Tran, C. (2009c). “An edge-based smoothed finite element method (ESFEM) for analysis of two-dimensional piezoelectric structures.” Journal of Smart Material and Structures, Vol. 12, pp. 065015 (12pp.).

    Article  Google Scholar 

  • Nguyen-Xuan, H. and Nguyen-Thoi, T. (2009a). “A stabilized smoothed finite element method for free vibration analysis of Mindlin-Reissner plates.” Communications in Numerical Methods in Engineering, Vol. 25, No. 8, pp. 882–906.

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen-Xuan, H., Rabczuk, T., Bordas, S., and Debongnie, J. F. (2008b). “A smoothed finite element method for plate analysis.” Computer Methods in Applied Mechanics and Engineering, Vol. 197, Nos. 13–16, pp. 1184–1203.

    Article  MATH  Google Scholar 

  • Puso, M. A., Chen, J. S., Zywicz, E., and Elmer, W. (2008). “Meshfree and finite element nodal integration methods.” International Journal for Numerical Methods in Engineering, Vol. 74, No. 3, pp. 416–446.

    Article  MathSciNet  MATH  Google Scholar 

  • Puso, M. A. and Solberg, J. (2006). “A stabilized nodally integrated tetrahedral.” International Journal for Numerical Methods in Engineering, Vol. 67, No. 6, pp. 841–867.

    Article  MathSciNet  MATH  Google Scholar 

  • Rabczuk, T. and Belytschko, T. (2004b). “Cracking particles: A simplied meshfree method for arbitrary evolving cracks.” International Journal for Numerical Methods in Engineering, Vol. 61, No. 13, pp. 2316–2343.

    Article  MATH  Google Scholar 

  • Rabczuk, T., Belytschko, T., and Xiao, S. P. (2004a). “Stable particle methods based on lagrangian kernels.” Computer Methods in Applied Mechanics and Engineering, Vol. 193, Nos. 12–14, pp. 1035–1063.

    Article  MathSciNet  MATH  Google Scholar 

  • Rabczuk, T., Bordas, S., and Zi, G. (2007). “A three-dimensional meshfree method for continuous crack initiation, nucleation and propagation in statics and dynamics.” Computational Mechanics, Vol. 40, No. 3, pp. 473–495.

    Article  MATH  Google Scholar 

  • Richardson, L. F. (1910). “The approximate arithmetical solution by finite differences of physical problems.” Trans. Roy. Soc. (London), Vol. A210, pp. 307–357.

    Google Scholar 

  • Timoshenko, S. P. and Goodier, J. N. (1987). Theory of elasticity (3rd ed.), McGraw-Hill, New York.

    Google Scholar 

  • Zienkiewicz, O. C. and Taylor, R. L. (2000). The finite element method, 5th Edition, Butterworth Heinemann, Oxford.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung Nguyen-Xuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen-Xuan, H., Nguyen, H.V., Bordas, S. et al. A cell-based smoothed finite element method for three dimensional solid structures. KSCE J Civ Eng 16, 1230–1242 (2012). https://doi.org/10.1007/s12205-012-1515-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-012-1515-7

Keywords

Navigation