Skip to main content
Log in

Simple technique to fabricate microscale and nanoscale silicon waveguide devices

  • Research Article
  • Published:
Frontiers of Optoelectronics in China Aims and scope Submit manuscript

Abstract

Fabrication of microscale and nanoscale silicon waveguide devices requires patterning silicon, but until recently, exploitation of the technology has been restricted by the difficulty of forming ever-small features with minimum linewidth fluctuation. A technique was developed for fabricating such devices achieving vertical sidewall profile, smooth sidewall roughness of less than 10 nm, and fine features of 40 nm. Subsequently, silicon microring resonator and silicon-grating coupler were realized using this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pavesi L, Guillot G. Optical Interconnects-The Silicon Approach. New York: Springer-Verlag, 2006

    Book  Google Scholar 

  2. Zhou Z P, Gao D S, Wang Y, Chen J L, Feng J B, Xia Z X, Chen Y. Nano-optoelectronics research in WNLO. In: Proceedings of 2006 Optics Valley of China International Symposium on Optoelectronics. Wuhan: IEEE, 2006, 8–11

    Chapter  Google Scholar 

  3. Wahlbrink T, Mollenhauer T, Georgiev Y M, Henschel W, Efavi J K, Gottlob H D B, Lemme M C, Kurz H, Niehusmann J, Bolivar P H. Highly selective etch process for silicon-on-insulator nanodevices. Microelectronic Engineering, 2005, 78–79 (special issue): 212-217

  4. Welch C C, Goodyear A L, Wahlbrink T, Lemme MC, Mollenhauer T. Silicon etch process options for micro- and nanotechnology using inductively coupled plasmas. Microelectronic Engineering, 2006, 83(4–9): 1170–1173

    Article  Google Scholar 

  5. Peyrade D, Chen Y, Talneau A, Patrini M, Galli M, Marabelli F, Agio M, Andreani L C, Silberstein E, Lalanne P. Fabrication and optical measurements of silicon on insulator photonic nanostructures. Microelectronic Engineering, 2002, 61–62: 529–536

    Article  Google Scholar 

  6. Absil P P, Hryniewicz J V, Little B E, Wilson R A, Joneckis L G, Ho P T. Compact microring notch filters. IEEE Photonics Technology Letters, 2000, 12(4): 398–400

    Article  Google Scholar 

  7. Little B E, Chu S T, Haus H A, Foresi J, Laine J P. Microring resonator channel dropping filters. Journal of Lightwave Technology, 1997, 15(6): 998–1005

    Article  Google Scholar 

  8. Almeida V R, Barrios C A, Panepucci R R, Lipson M. All-optical control of light on a silicon chip. Nature, 2004, 431(7012): 1081–1084

    Article  Google Scholar 

  9. Xu Q F, Schmidt B, Pradhan S, Lipson M. Micrometre-scale silicon electro-optic modulator. Nature, 2005, 435(7040): 325–327

    Article  Google Scholar 

  10. Absil P P, Hryniewicz J V, Little B E, Cho P S, Wilson R A, Joneckis L G, Ho P T. Wavelength conversion in GaAs micro-ring resonators. Optics Letters, 2000, 25(8): 554–556

    Article  Google Scholar 

  11. Bourdon G, Alibert G, Bequin A, Bellman B, Guiot E. Ultralow loss ring resonators using 3.5% index-contrast Ge-doped silica waveguides IEEE Photonics Technology Letters, 2003, 15(5): 709–711

    Google Scholar 

  12. Rabiei P, Steier W H, Zhang C, Dalton L R. Polymer micro-ring filters and modulators. Journal of Lightwave Technology, 2002, 20(11): 1968–1975

    Article  Google Scholar 

  13. Chen WY, Grover R, Ibrahim TA, Van V, Ho P T. Compact singlemode benzocyclobutene microracetrack resonators. In: Proceedings of Integrated Photonics Research. Washington, D.C.: Optical Society of America, 2003, ITuG2

    Google Scholar 

  14. Kiyat I, Kocabas C, Aydinli A. Integrated micro ring resonator displacement sensor for scanning probe microscopies. Journal of Micromechanics and Microengineering, 2004, 14(3): 374–381

    Article  Google Scholar 

  15. De Vos K, Bartolozzi I, Schacht E, Bienstman P, Baets R. Siliconon-insulator microring resonator for sensitive and label-free biosensing. Optics Express, 2007, 15(12): 7610–7615

    Article  Google Scholar 

  16. Krioukov E, Klunder D J W, Driessen A, Greve J, Otto C. Sensor based on an integrated optical microcavity. Optics Letters, 2002, 27(7): 512–514

    Article  Google Scholar 

  17. Ksendzov A, Lin Y. Integrated optics ring-resonator sensors for protein detection. Optics Letters, 2005, 30(24): 3344–3346

    Article  Google Scholar 

  18. Guo J P, Shaw M J, Vawter G A, Hadley G R, Esherick P, Sullivan C T. High-Q microring resonator for biochemical sensors. Proceedings of SPIE, 2005, 5728: 83–92

    Article  Google Scholar 

  19. Yalçin A, Popat K C, Aldridge J C, Desai T A, Hryniewicz J, Chbouki N, Little B E, Oliver K, Van V, Chu S, Gill D, Anthes-Washburn M, Unlu M S, Goldberg B B. Optical sensing of biomolecules using microring resonators. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(1): 148–155

    Article  Google Scholar 

  20. Feng J B, Zhou Z P. High efficiency compact grating coupler for integrated optical circuits. Proceedings of SPIE, 2006, 6351: 63511H

    Article  Google Scholar 

  21. Flamm D L. Mechanisms of silicon etching in fluorine-and-chlorinecontaining plasmas. Pure and Applied Chemistry, 1990, 62(9): 1709–1720

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiping Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Feng, J., Zhou, Z. et al. Simple technique to fabricate microscale and nanoscale silicon waveguide devices. Front. Optoelectron. China 2, 308–311 (2009). https://doi.org/10.1007/s12200-009-0049-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-009-0049-1

Keywords

Navigation