Skip to main content
Log in

Mechanical Role of Nesprin-1-Mediated Nucleus–Actin Filament Binding in Cyclic Stretch-Induced Fibroblast Elongation

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

The intracellular mechanical link tethering the nucleus to the cytoskeleton has been suggested to be the linker of the nucleoskeleton and cytoskeleton (LINC) complex. Previous studies have reported that knockdown of nesprin-1, a component of the LINC complex that directly binds to actin filaments, suppresses cellular morphological response to mechanical stimuli. The relation between nesprin-1 knockdown and cellular morphological changes, however, remains unclear. In this study, we examined the mechanical role of nucleus–actin filament binding in morphological changes of fibroblasts exposed to cyclic stretching. After exposure to 10% cyclic stretching for 6 h, fibroblasts transfected with nesprin-1-specific small interfering RNA showed fewer elongated shapes compared with non-transfected cells. To further examine the mechanical role of the nucleus and nucleus-bound actin filaments, we applied cyclic stretching to fibroblasts treated with Trichostatin A (TSA), which decreases nuclear stiffness and thereby reduces nucleus-binding actin filament tension. TSA-treatment was found to induce more rounded cellular shapes than those of non-treated cells under both static and cyclic stretching conditions. These results suggest that the tension of nucleus-bound actin filaments plays an important role in the formation of elongated fibroblasts under cyclic stretching and that nesprin-1 knockdown causes a decrease of tension in nucleus-associated actin filaments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Anno, T., N. Sakamoto, and M. Sato. Role of nesprin-1 in nuclear deformation in endothelial cells under static and uniaxial stretching conditions. Biochem. Biophys. Res. Commun. 424(1):94–99, 2012.

    Article  Google Scholar 

  2. Bashur, C., L. A. Dahlgren, and A. G. Goldstein. Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D,L-lactic-co-glycolic acid) meshes. Biomaterials 27(33):5681–5688, 2006.

    Article  Google Scholar 

  3. Chancellor, T. J., J. Lee, C. K. Thodeti, and T. Lele. Actomyosin tension exerted on the nucleus through nesprin-1 connections influences endothelial cell adhesion, migration, and cyclic strain-induced reorientation. Biophys. J. 99(1):115–123, 2010.

    Article  Google Scholar 

  4. Chang, Y. C., P. Nalbant, J. Birkenfeld, Z. F. Chang, and G. M. Bokoch. GEF-H1 couples nocodazole-induced microtubule disassembly to cell contractility via RhoA. Mol. Biol. Cell 19(5):2147–2153, 2008.

    Article  Google Scholar 

  5. Chen, B., C. Co, and C. C. Ho. Cell shape dependent regulation of nuclear morphology. Biomaterials 67:129–136, 2015.

    Article  Google Scholar 

  6. Crisp, M., Q. Liu, K. Roux, J. B. Rattner, C. Shanahan, B. Burke, P. D. Stahl, and D. Hodzic. Coupling of the nucleus and cytoplasm: role of the LINC complex. J. Cell Biol. 172(1):41–53, 2006.

    Article  Google Scholar 

  7. Dahl, K. N., P. Scaffidi, M. F. Islam, A. G. Yodh, K. L. Wilson, and T. Misteli. Distinct structural and mechanical properties of the nuclear lamina in Hutchinson-Gilford progeria syndrome. Proc. Natl. Acad. Sci. USA 103(27):10271–10276, 2006.

    Article  Google Scholar 

  8. Deguchi, S., T. S. Matsui, and K. Iio. The position and size of individual focal adhesions are determined by intracellular stress-dependent positive regulation. Cytoskeleton (Hoboken) 68(11):639–651, 2011.

    Article  Google Scholar 

  9. Deguchi, S., T. Ohashi, and M. Sato. Intracellular stress transmission through actin stress fiber network in adherent vascular cells. Mol. Cell Biomech. 2(4):205–216, 2005.

    Google Scholar 

  10. Greiner, A. M., H. Chen, J. P. Spatz, and R. Kemkemer. Cyclic tensile strain controls cell shape and directs actin stress fiber formation and focal adhesion alignment in spreading cells. PLoS ONE 8(10):e77328, 2013.

    Article  Google Scholar 

  11. Guilluy, C., R. Garcia-Mata, and K. Burridge. Rho protein crosstalk: another social network? Trends Cell Biol. 21(12):718–726, 2011.

    Article  Google Scholar 

  12. Guilluy, C., L. D. Osborne, L. Van Langeghem, L. Sharek, R. Superfine, R. Garcia-Mata, and K. Burridge. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nat. Cell Biol. 16(4):376–381, 2014.

    Article  Google Scholar 

  13. Hayakawa, K., H. Tatsumi, and M. Sokabe. Actin stress fibers transmit and focus force to activate mechanosensitive channels. J. Cell Sci. 121(Pt 4):496–503, 2008.

    Article  Google Scholar 

  14. Hoffman, L. M., C. C. Jensen, A. Chaturvedi, M. Yoshigi, and M. C. Beckerle. Stretch-induced actin remodeling requires targeting of zyxin to stress fibers and recruitment of actin regulators. Mol. Biol. Cell 23(10):1846–1859, 2012.

    Article  Google Scholar 

  15. Huang, W., N. Sakamoto, R. Miyazawa, and M. Sato. Role of paxillin in the early phase of orientation of the vascular endothelial cells exposed to cyclic stretching. Biochem. Biophys. Res. Commun. 418(4):708–713, 2012.

    Article  Google Scholar 

  16. Kataoka, N., S. Ujita, and M. Sato. Effect of flow direction on the morphological responses of cultured bovine aortic endothelial cells. Med. Biol. Eng. Comput. 36(1):122–128, 1998.

    Article  Google Scholar 

  17. Katsumi, A., J. Milanini, W. B. Kiosses, M. A. del Pozo, R. Kaunas, S. Chien, K. M. Hahn, and M. A. Schwartz. Effects of cell tension on the small GTPase Rac. J. Cell Biol. 158(1):153–164, 2002.

    Article  Google Scholar 

  18. Kaunas, R., P. Nguyen, S. Usami, and S. Chein. Cooperative effects of Rho and mechanical stretch on stress fiber organization. Proc. Natl. Acad. Sci. USA 102(44):15895–15900, 2005.

    Article  Google Scholar 

  19. Khatau, S. B., C. M. Hale, P. J. Stewart-Hutchinson, M. S. Patel, C. L. Stewart, P. C. Searson, D. Hodzic, and D. Wirtz. A perinuclear actin cap regulates nuclear shape. Proc. Natl. Acad. Sci. USA 106(45):19017–19022, 2009.

    Article  Google Scholar 

  20. Khatau, S. B., D. H. Kim, C. M. Hale, R. J. Bloom, and D. Wirtz. The perinuclear actin cap in health and disease. Nucleus 1(4):337–342, 2010.

    Article  Google Scholar 

  21. Krause, M., J. Te Riet, and K. Wolf. Probing the compressibility of tumor cell nuclei by combined atomic force-confocal microscopy. Phys. Biol. 10(6):065002, 2013.

    Article  Google Scholar 

  22. Lombardi, M. L., D. E. Jaalouk, C. M. Shanahan, B. Burke, K. J. Roux, and J. Lammerding. The interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton. J. Biol. Chem. 286:26743–26753, 2011.

    Article  Google Scholar 

  23. Meinke, P., and E. C. Schirmer. LINC’ing form and function at the nuclear envelope. FEBS Lett. 589:2514–2521, 2015.

    Article  Google Scholar 

  24. Mejat, A., and T. Misteli. LINC complexes in health and disease. Nucleus 1(1):40–52, 2010.

    Article  Google Scholar 

  25. Neumann, F. R., and P. Nurse. Nuclear size control in fission yeast. J. Cell Biol. 179(4):593–600, 2007.

    Article  Google Scholar 

  26. Oya, K., N. Sakamoto, T. Ohashi, and M. Sato. Combined stimulation with cyclic stretching and hypoxia increases production of matrix metalloproteinase-9 and cytokines by macrophages. Biochem. Biophys. Res. Commun. 412(4):678–682, 2011.

    Article  Google Scholar 

  27. Prager-Khoutorsky, M., A. Lichtenstein, R. Krishnan, K. Rajendran, A. Mayo, Z. Kam, B. Geiger, and A. D. Bershadsky. Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing. Nat. Cell Biol. 13(12):1457–1465, 2011.

    Article  Google Scholar 

  28. Scaffidi, P., L. Gordon, and T. Misteli. The cell nucleus and aging: tantalizing clues and hopeful promises. PLoS Biol. 3(11):e395, 2005.

    Article  Google Scholar 

  29. Shyy, J. Y., and S. Chien. Role of integrins in endothelial mechanosensing of shear stress. Circ. Res. 91(9):769–775, 2002.

    Article  Google Scholar 

  30. Stewart-Hutchinson, P. J., C. M. Hale, D. Wirtz, and D. Hodzic. Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness. Exp. Cell Res. 314(8):1892–1905, 2008.

    Article  Google Scholar 

  31. Tondon, A., and R. Kaunas. The direction of stretch-induced cell and stress fiber orientation depends on collagen matrix stress. PLoS ONE 9(2):e89592, 2014.

    Article  Google Scholar 

  32. Tzima, E. Role of small GTPases in endothelial cytoskeletal dynamics and the shear stress response. Circ. Res. 98(2):176–185, 2006.

    Article  Google Scholar 

  33. Varma, H., A. Yamamoto, M. R. Sarantos, R. E. Hughes, and B. R. Stockwell. Mutant huntingtin alters cell fate in response to microtubule depolymerization via the GEF-H1-RhoA-ERK pathway. J. Biol. Chem. 285(48):37445–37457, 2010.

    Article  Google Scholar 

  34. Vishavkarma, R., S. Raghavan, C. Kuyyamudi, A. Majumder, J. Dhawan, and P. A. Pullarkat. Role of actin filaments in correlating nuclear shape and cell spreading. PLoS ONE 9(9):e107895, 2014.

    Article  Google Scholar 

  35. Wang, N., J. D. Tytell, and D. E. Ingber. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 10(1):75–82, 2009.

    Article  Google Scholar 

Download references

Acknowledgments

The present study was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (Nos. 15K01304 and 16K15837) and the interdepartmental research fund of Kawasaki University of Medial Welfare.

Conflict of interest

N. Sakamoto, M. Ogawa, K. Sadamoto, M. Takeuchi, and N. Kataoka declare that they have no conflicts of interest.

Ethical Standards

No human or animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoya Sakamoto.

Additional information

Associate Editor Kris Noel Dahl oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakamoto, N., Ogawa, M., Sadamoto, K. et al. Mechanical Role of Nesprin-1-Mediated Nucleus–Actin Filament Binding in Cyclic Stretch-Induced Fibroblast Elongation. Cel. Mol. Bioeng. 10, 327–338 (2017). https://doi.org/10.1007/s12195-017-0487-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-017-0487-6

Keywords

Navigation