Skip to main content
Log in

Anchor Effect of Interactions Between Kinesin’s Nucleotide-Binding Pocket and Microtubule

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Microtubule not only provides the track for kinesin but also modulates kinesin’s mechanochemical cycle. Microtubule binding greatly increases the rates of two chemical steps occurring inside the nucleotide-binding pocket (NBP) of kinesin, i.e., ATP hydrolysis and ADP release. Kinesin neck linker docking (the key force-generation step) is initiated by the motor head rotation induced by ATP binding which needs an anchor provided by microtubule. These functions of microtubule can only be accomplished through interactions with kinesin. Based on the newly obtained crystal structures of kinesin-microtubule complexes, we investigate the interactions between kinesin’s NBP and microtubule using molecular dynamics simulations. We find that the N-3 motif of NBP has direct interactions with a group of negatively charged residues on α-tubulin through Ser235 and Lys237. These specific long-range interactions induce binding of NBP to microtubule at the right position and assist the formation of the indirect interaction between NBP and microtubule. These interactions between N-3 and microtubule have an important anchor effect for kinesin’s motor domain during its rotation with Ser235 as the rotation center, and also play a crucial role in stabilizing the ATP-hydrolysis environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Asenjo, A. B., N. Krohn and H. Sosa. Configuration of the two kinesin motor domains during ATP hydrolysis. Nat. Struct. Mol. Biol. 10:836–842, 2003.

    Article  Google Scholar 

  2. Asenjo, A. B. and H. Sosa. A mobile kinesin-head intermediate during the ATP-waiting state. Proc. Natl. Acad. Sci. USA 106:5657–5662, 2009.

    Article  Google Scholar 

  3. Asenjo, A. B., Y. Weinberg and H. Sosa. Nucleotide binding and hydrolysis induces a disorder-order transition in the kinesin neck-linker region. Nat. Struct. Mol. Biol. 13:648–654, 2006.

    Article  Google Scholar 

  4. Atherton, J., I. Farabella, I.-M. Yu, S. S. Rosenfeld, A. Houdusse, et al.. Conserved mechanisms of microtubule-stimulated ADP release, ATP binding, and force generation in transport kinesins. eLife 3:e03680, 2014.

  5. Block, S. M. Kinesin motor mechanics: Binding, stepping, tracking, gating, and limping. Biophys. J. 92:2986–2995, 2007.

    Article  Google Scholar 

  6. Cao, L., W. Wang, Q. Jiang, C. Wang, M. Knossow, et al. The structure of apo-kinesin bound to tubulin links the nucleotide cycle to movement. Nat. Commun. 5:5364, 2014.

    Article  Google Scholar 

  7. Crevel, I., A. Lockhart and R. A. Cross. Weak and strong states of kinesin and ncd. J. Mol. Biol. 257:66–76, 1996.

    Article  Google Scholar 

  8. Geng, Y., Q. Ji, S. Liu and S. Yan. Initial conformation of kinesin’s neck linker. Chin. Phys. B 23:108701, 2014.

    Article  Google Scholar 

  9. Geng, Y., S. Liu, Q. Ji and S. Yan. Mechanical amplification mechanism of kinesin’s β-domain. Arch Biochem. Biophys. 543:10–14, 2014.

    Article  Google Scholar 

  10. Gigant, B., W. Wang, B. Dreier, Q. Jiang, L. Pecqueur, et al. Structure of a kinesin-tubulin complex and implications for kinesin motility. Nat. Struct. Mol. Biol. 20:1001–1007, 2013.

    Article  Google Scholar 

  11. Hackney, D. D. Kinesin atpase: rate-limiting ADP release. Proc Natl Acad Sci USA 85: 6314–6318, 1988.

    Article  Google Scholar 

  12. Hancock, W. O. and J. Howard. Processivity of the motor protein kinesin requires two heads. J. Cell Biol. 140:1395–1405, 1998.

    Article  Google Scholar 

  13. Hirokawa N., S. Niwa and Y. Tanaka. Molecular motors in neurons: Transport mechanisms and roles in brain function, development, and disease. Neuron 68:610–638, 2010.

    Article  Google Scholar 

  14. Hirokawa N., and Y. Noda. Intracellular transport and kinesin superfamily proteins, kifs: Structure, function, and dynamics. Physiol. Rev. 88:1089–1118, 2008.

    Article  Google Scholar 

  15. Howard, J. Mechanics of Motor Proteins and the Cytoskeleton. Sunderland: Sinauer Associates Inc, 2001.

    Google Scholar 

  16. Humphrey W., A. Dalke, and K. Schulten. Vmd: Visual molecular dynamics. J. Mol. Graphics 14:33–38, 1996.

    Article  Google Scholar 

  17. Jorgensen W.L., J. Chandrasekhar, J.D. Madura, R.W. Impey, and M.L. Klein. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79:926–935, 1983.

    Article  Google Scholar 

  18. Kanada, R., T. Kuwata, H. Kenzaki, S. Takada. Structure-based molecular simulations reveal the enhancement of biased brownian motions in single-headed kinesin. PLoS Comput. Biol. 9:e10022907, 2013.

    Article  Google Scholar 

  19. Kikkawa, M., and N. Hirokawa. High-resolution cryo-EM maps show the nucleotide binding pocket of KIF1A in open and closed conformations. EMBO J. 25:4187–4194, 2006.

    Article  Google Scholar 

  20. Kikkawa M., E. P. Sablin, Y. Okada, H. Yajima, R. J. Fletterick, et al. Switch-based mechanism of kinesin motors. Nature 411:439–445, 2001.

    Article  Google Scholar 

  21. Krukau, A., V. Knecht and R. Lipowsky. Allosteric control of kinesin’s motor domain by tubulin: a molecular dynamics study. Phys. Chem. Chem. Phys. 16:6189–6198, 2014.

    Article  Google Scholar 

  22. Kull, F. J., E. P. Sablin, R. Lau, R. J. Fletterick and R. D. Vale. Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380:550–555, 1996.

    Article  Google Scholar 

  23. Lawrence C. J., R. K. Dawe, K. R. Christie, D. W. Cleveland, and S. C. Dawson, et al. A standardized kinesin nomenclature. J. Cell Biol. 167:19–22, 2004.

    Article  Google Scholar 

  24. Li, M. and W. Zheng. All-atom structural investigation of kinesin-microtubule complex constrained by high-quality cryo-electron-microscopy maps. Biochemistry 51:5022–5032, 2012.

    Article  Google Scholar 

  25. MacKerell A. D., D. Bashford, Bellott, R. L. Dunbrack, J. D. Evanseck, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102:3586–3616, 1998.

    Article  Google Scholar 

  26. McGrath, M. J., I.-F. W. Kuo, S. Hayashi and S. Takada. Adenosine triphosphate hydrolysis mechanism in kinesin studied by combined quantum-mechanical/molecular-mechanical metadynamics simulations. J. Am. Chem. Soc. 135:8908–8919, 2013.

    Article  Google Scholar 

  27. Naber, N., T. J. Minehardt, S. Rice, X. Chen, J. Grammer, et al. Closing of the nucleotide pocket of kinesin-family motors upon binding to microtubules. Science 300:798–801, 2003.

    Article  Google Scholar 

  28. Naber, N., S. Rice, M. Matuska, R. D. Vale, R. Cooke, et al. EPR spectroscopy shows a microtubule-dependent conformational change in the kinesin switch 1 domain. Biophys. J. 84:3190–3196, 2003.

    Article  Google Scholar 

  29. Parke, C. L., E. J. Wojcik, S. Kim and D. K. Worthylake. ATP hydrolysis in eg5 kinesin involves a catalytic two-water mechanism. J. Biol. Chem. 285:5859–5867, 2010.

    Article  Google Scholar 

  30. Phillips J. C., R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, et al. Scalable molecular dynamics with namd. J. Comput. Chem. 26:1781–1802, 2005.

    Article  Google Scholar 

  31. Reubold, T. F., S. Eschenburg, A. Becker, F. J. Kull and D. J. Manstein. A structural model for actin-induced nucleotide release in myosin. Nat. Struct. Biol. 10:826–830, 2003.

    Article  Google Scholar 

  32. Rosenfeld, S. S., P. M. Fordyce, G. M. Jefferson, P. H. King and S. M. Block. Stepping and stretching: How kinesin uses internal strain to walk processively. J. Biol. Chem. 278:18550–18556, 2003.

    Article  Google Scholar 

  33. Rosenfeld, S. S., J. Xing, G. M. Jefferson, H. C. Cheung and P. H. King. Measuring kinesin’s first step. J. Biol. Chem. 277:36731–36739, 2002.

    Article  Google Scholar 

  34. Sablin E. P., and R. J. Fletterick. Nucleotide switches in molecular motors: structural analysis of kinesins and myosins. Curr. Opin. Struct. Biol. 11:716–724, 2001.

    Article  Google Scholar 

  35. Sablin, E. P., F. J. Kull, R. Cooke, R. D. Vale and R. J. Fletterick. Crystal structure of the motor domain of the kinesin-related motor ncd. Nature 380:555–559, 1996.

    Article  Google Scholar 

  36. Sack, S., F. J. Kull and E. Mandelkow. Motor proteins of the kinesin family structures, variations, and nucleotide binding sites. Eur. J. Biochem. 262:1–11, 1999.

    Article  Google Scholar 

  37. Shang, Z., K. Zhou, C. Xu, R. Csencsits, J. C. Cochran, et al.. High-resolution structures of kinesin on microtubules provide a basis for nucleotide-gated force-generation. eLife 3:e04686, 2014.

  38. Sindelar, C. A seesaw model for intermolecular gating in the kinesin motor protein. Biophys. Rev. 3:85–100, 2011.

    Article  Google Scholar 

  39. Sindelar C. V., M. J. Budny, S. Rice, N. Naber, R. Fletterick, et al. Two conformations in the human kinesin power stroke defined by x-ray crystallography and epr spectroscopy. Nat. Struct. Mol. Biol. 9:844–848, 2002.

    Google Scholar 

  40. Sindelar, C. V. and K. H. Downing. The beginning of kinesin’s force-generating cycle visualized at 9-Å resolution. J. Cell Biol. 177:377–385, 2007.

    Article  Google Scholar 

  41. Sindelar, C. V. and K. H. Downing. An atomic-level mechanism for activation of the kinesin molecular motors. Proc. Natl. Acad. Sci. USA 107:4111–4116, 2010.

    Article  Google Scholar 

  42. Skiniotis, G., J. C. Cochran, J. Müller, E. Mandelkow, S. P. Gilbert, et al. Modulation of kinesin binding by the C-termini of tubulin. EMBO J. 23:989–999, 2004.

    Article  Google Scholar 

  43. Smith, C. and I. Rayment. Active site comparisons highlight structural similarities between myosin and other p-loop proteins. Biophys. J. 70: 1590–1602, 1996.

    Article  Google Scholar 

  44. Song, H., and S. A. Endow. Decoupling of nucleotide- and microtubule-binding sites in a kinesin mutant. Nature 396:587–590, 1998.

    Article  Google Scholar 

  45. Toprak, E., A. Yildiz, M. T. Hoffman, S. S. Rosenfeld and P. R. Selvin. Why kinesin is so processive. Proc. Natl. Acad. Sci. USA 106:12717–12722, 2009.

  46. Uchimura, S., Y. Oguchi, Y. Hachikubo, S. Ishiwata and E. Muto. Key residues on microtubule responsible for activation of kinesin ATPase. EMBO J. 29:1167–1175, 2010.

    Article  Google Scholar 

  47. Uemura, S. and S. Ishiwata. Loading direction regulates the affinity of ADP for kinesin. Nat. Struct. Mol. Biol. 10:308–311, 2003.

    Article  Google Scholar 

  48. Vale R. D. The molecular motor toolbox for intracellular transport. Cell 112:467–480, 2003.

    Article  Google Scholar 

  49. Vale R. D., and R. A. Milligan. The way things move: Looking under the hood of molecular motor proteins. Science 288:88–95, 2000.

    Article  Google Scholar 

  50. Zhang, Z. and D. Thirumalai. Dissecting the kinematics of the kinesin step. Structure 20:628–640, 2012.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11545014, 11605038 and the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Science, China (Grant No. Y5KF211CJ1).

Conflict of Interest

Yumei Jin, Yizhao Geng, Lina Lü, Yilong Ma, Gang Lü, Hui Zhang, and Qing Ji declare that they have no conflicts of interest.

Ethical Standards

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yizhao Geng or Qing Ji.

Additional information

Associate Editor Mian Long oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Geng, Y., Lü, L. et al. Anchor Effect of Interactions Between Kinesin’s Nucleotide-Binding Pocket and Microtubule. Cel. Mol. Bioeng. 10, 162–173 (2017). https://doi.org/10.1007/s12195-017-0477-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-017-0477-8

Keywords

Navigation