Skip to main content
Log in

Cholesterol Enrichment Impairs Capacitative Calcium Entry, eNOS Phosphorylation & Shear Stress-Induced NO Production

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Endothelial dysfunction, characterized by decreased production or availability of nitric oxide (NO), is widely believed to be the hallmark of early-stage atherosclerosis. In addition, hypercholesterolemia is considered a major risk factor for development of atherosclerosis and is associated with impaired flow-induced dilation. However, the mechanism by which elevated cholesterol levels leads to decreased production of NO is unclear. NO is released in response to shear stress and agonist-evoked changes in intracellular calcium. Although calcium signaling is complex, we have previously shown that NO production by endothelial nitric oxide synthase (eNOS) is preferentially activated by calcium influx via store-operated channels. We hypothesized that cholesterol enrichment altered this signaling pathway (known as capacitive calcium entry; CCE) ultimately leading to decreased NO. Our results show that cholesterol enrichment abolished ATP-induced eNOS phosphorylation and attenuated the calcium response by the preferential inhibition of CCE. Furthermore, cholesterol enrichment also inhibited shear stress-induced NO production and eNOS phosporylation, consistent with our previous results showing a significant role for ATP autocrine stimulation and subsequent activation of CCE in the endothelial flow response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Ambudkar, I. S., B. C. Bandyopadhyay, X. B. Liu, T. P. Lockwich, B. Paria, and H. L. Ong. Functional organization of TRPC-Ca2+ channels and regulation of calcium microdomains. Cell Calcium 40:495–504, 2006.

    Article  Google Scholar 

  2. Andrews, A. M., D. Jaron, D. G. Buerk, and K. A. Barbee. Shear stress-induced NO production is dependent on ATP autocrine signaling and capacitative calcium entry. Cell Mol. Bioeng. 7:510–520, 2014.

    Article  Google Scholar 

  3. Andrews, A. M., D. Jaron, D. G. Buerk, P. L. Kirby, and K. A. Barbee. Direct, real-time measurement of shear stress-induced nitric oxide produced from endothelial cells in vitro. Nitric Oxide 23:335–342, 2010.

    Article  Google Scholar 

  4. Bastiaanse, E. M. L., K. M. Hold, and A. VanderLaarse. The effect of membrane cholesterol content on ion transport processes in plasma membranes. Cardiovasc. Res. 33:272–283, 1997.

    Article  Google Scholar 

  5. Bialecki, R. A., and T. N. Tulenko. Excess membrane cholesterol alters calcium channels in arterial smooth muscle. Am. J. Physiol. 257:C306–C314, 1989.

    Google Scholar 

  6. Boittin, F. X., F. Gribi, K. Serir, and J. L. Beny. Ca2+-independent PLA2 controls endothelial store-operated Ca2+ entry and vascular tone in intact aorta. Am. J. Physiol. Heart Circ. Physiol. 295:H2466–H2474, 2008.

    Article  Google Scholar 

  7. Bowles, D. K., C. L. Heaps, J. R. Turk, K. K. Maddali, and E. M. Price. Hypercholesterolemia inhibits L-type calcium current in coronary macro-, not microcirculation. J. Appl. Physiol. 96:2240–2248, 2004.

    Article  Google Scholar 

  8. Buga, G. M., M. E. Gold, J. M. Fukuto, and L. J. Ignarro. Shear-stress induced release of nitricoxide from endothelial-cells grown on beads. Hypertension 17:187–193, 1991.

    Article  Google Scholar 

  9. Cabral, P. D., N. J. Hong, and J. L. Garvin. ATP mediates flow-induced NO production in thick ascending limbs. Am. J. Physiol. Ren. Physiol. 303:F194–F200, 2012.

    Article  Google Scholar 

  10. Casino, P. R., C. M. Kilcoyne, A. A. Quyyumi, J. M. Hoeg, and J. A. Panza. The role of nitric oxide in endothelium-dependent vasodilation of hypercholesterolemic patients. Circulation 88:2541–2547, 1993.

    Article  Google Scholar 

  11. Chun, Y. S., S. Shin, Y. Kim, H. Cho, M. K. Park, T. W. Kim, S. V. Voronov, G. Di Paolo, B. C. Suh, and S. Chung. Cholesterol modulates ion channels via down-regulation of phosphatidylinositol 4,5-bisphosphate. J. Neurochem. 112:1286–1294, 2010.

    Article  Google Scholar 

  12. Cohen, R. A., F. Plane, S. Najibi, I. Huk, T. Malinski, and C. J. Garland. Nitric oxide is the mediator of both endothelium-dependent relaxation and hyperpolarization of the rabbit carotid artery. Proc. Natl. Acad. Sci. USA 94:4193–4198, 1997.

    Article  Google Scholar 

  13. Dedkova, E. N., and L. A. Blatter. Nitric oxide inhibits capacitative Ca2+ entry and enhances endoplasmic reticulum Ca2+ uptake in bovine vascular endothelial cells. J. Physiol. Lond. 539:77–91, 2002.

    Article  Google Scholar 

  14. Fang, Y., R. M. Emile, E. Hsieh, H. Osman, S. M. Hashemi, P. F. Davies, G. H. Rothblat, R. L. Wilensky, and I. Levitan. Hypercholesterolemia suppresses inwardly rectifying K+ channels in aortic endothelium in vitro and in vivo. CircRes 98:1064–1071, 2006.

    Google Scholar 

  15. Feron, O., C. Dessy, S. Moniotte, J. P. Desager, and J. L. Balligand. Hypercholesterolemia decreases nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase. J. Clin. Investig. 103:897–905, 1999.

    Article  Google Scholar 

  16. Ferroni, P., S. Basili, V. Paoletti, and G. Davi. Endothelial dysfunction and oxidative stress in arterial hypertension. Nutr. Metab. Carbiovasc. Dis. 16:222–233, 2006.

    Article  Google Scholar 

  17. Fisslthaler, B., S. Dimmeler, C. Hermann, R. Busse, and I. Fleming. Phosphorylation and activation of the endothelial nitric oxide synthase by fluid shear stress. Acta Physiol. Scand 168:81–88, 2000.

    Article  Google Scholar 

  18. Flavahan, N. A. Atherosclerosis or lipoprotein-induced endothelial dysfunction—potential mechanisms underlying reduction in EDRF/nitric oxide activity. Circulation 85:1927–1938, 1992.

    Article  Google Scholar 

  19. Giannattasio, C., A. A. Mangoni, M. Failla, S. Carugo, M. L. Stella, P. Stefanoni, G. Grassi, C. Vergani, and G. Mancia. Impaired radial artery compliance in normotensive subjects with familial hypercholesterolemia. Atherosclerosis 124:249–260, 1996.

    Article  Google Scholar 

  20. Glagov, S., E. Weisenberg, C. K. Zarins, R. Stankunavicius, and G. J. Kolettis. Compensatory enlargement of human atherosclerotic coronary arteries. N. Engl. J. Med. 316:1371–1375, 1987.

    Article  Google Scholar 

  21. Graziani, A., V. Bricko, M. Carmignani, W. F. Graier, and K. Groschner. Cholesterol- and caveolin-rich membrane domains are essential for phospholipase A2-dependent EDHF formation. Cardiovasc. Res. 64:234–242, 2004.

    Article  Google Scholar 

  22. Hashimoto, M., K. Shinozuka, Y. Tanabe, H. M. Shahdat, S. Gamoh, Y. M. Kwon, Y. Tanaka, M. Kunitomo, and S. Masumura. Long-term supplementation with a high cholesterol diet decreases the release of ATP from the caudal artery in aged rats. Life Sci. 63:1879–1885, 1998.

    Article  Google Scholar 

  23. Hayashi, T., M. Naito, T. Ishikawa, M. Kuzuya, C. Funaki, T. Tateishi, K. Asai, H. Hidaka, and F. Kuzuya. Beta-migrating very low density lipoprotein attenuates endothelium-dependent relaxation in rabbit atherosclerotic aortas. Blood Vessel. 26:290–299, 1989.

    Google Scholar 

  24. Hong, D., D. Jaron, D. G. Buerk, and K. A. Barbee. Heterogeneous response of microvascular endothelial cells to shear stress. Am. J. Physiol. Heart Circul. Physiol. 290:H2498–H2508, 2006.

    Article  Google Scholar 

  25. Hong, D., D. Jaron, D. G. Buerk, and K. A. Barbee. Transport-dependent calcium signaling in spatially segregated cellular caveolar domains. Am. J. Physiol. Cell Physiol. 294:C856–C866, 2008.

    Article  Google Scholar 

  26. Jan, C. R., C. M. Ho, S. N. Wu, and C. J. Tseng. Mechanism of rise and decay of thapsigargin-evoked calcium signals in MDCK cells. Life Sci. 64:259–267, 1999.

    Article  Google Scholar 

  27. Jansen, M., V. M. Pietiarinen, H. Polonen, L. Rasilainen, M. Koivusalo, U. Ruotsalainen, E. Jokitalo, and E. Ikonen. Cholesterol substitution increases the structural heterogeneity of caveolae. J. Biol. Chem. 283:14610–14618, 2008.

    Article  Google Scholar 

  28. Kuchan, M. J., H. Jo, and J. A. Frangos. Role of G proteins in shear stress-mediated nitric oxide production by endothelial cells. Am. J. Physiol. 267:C753–C758, 1994.

    Google Scholar 

  29. Lee, A. K., V. Yeung-Yam-Wah, F. W. Tse, and A. Tse. Cholesterol elevation impairs glucose-stimulated Ca(2+) signaling in mouse pancreatic beta-cells. Endocrinology 152:3351–3361, 2011.

    Article  Google Scholar 

  30. Levitan, I., A. E. Christian, T. N. Tulenko, and G. H. Rothblat. Membrane cholesterol content modulates activation of volume-regulated anion current in bovine endothelial cells. J. Gen. Physiol. 115:405–416, 2000.

    Article  Google Scholar 

  31. Li, Y. K., M. T. Ge, L. Ciani, G. Kuriakose, E. J. Westover, M. Dura, D. F. Covey, J. H. Freed, F. R. Maxfield, J. Lytton, and I. Tabas. Enrichment of endoplasmic reticulum with cholesterol inhibits sarcoplasmic-endoplasmic reticulum calcium ATPase-2b activity in parallel with increased order of membrane lipids—Implications for depletion of endoplasmic reticulum calcium stores and apoptosis in cholesterol-loaded macrophages. J. Biol. Chem. 279:37030–37039, 2004.

    Article  Google Scholar 

  32. Lin, S., K. A. Fagan, K. X. Li, P. W. Shaul, D. M. F. Cooper, and D. M. Rodman. Sustained endothelial nitric-oxide synthase activation requires capacitative Ca2+ entry. J. Biol. Chem. 275:17979–17985, 2000.

    Article  Google Scholar 

  33. Linder, A. E., L. P. McCluskey, K. R. Cole, 3rd, K. M. Lanning, and R. C. Webb. Dynamic association of nitric oxide downstream signaling molecules with endothelial caveolin-1 in rat aorta. J. Pharmacol. Exp. Ther. 314:9–15, 2005.

    Article  Google Scholar 

  34. Lockwich, T. P., X. B. Liu, B. B. Singh, J. Jadlowiec, S. Weiland, and I. S. Ambudkar. Assembly of Trp1 in a signaling complex associated with caveolin-scaffolding lipid raft domains. J. Biol. Chem. 275:11934–11942, 2000.

    Article  Google Scholar 

  35. Mochizuki, S., M. Goto, Y. Chiba, Y. Ogasawara, and F. Kajiya. Flow dependence and time constant of the change in nitric oxide concentration measured in the vascular media. Med. Biol. Eng. Comput. 37:497–503, 1999.

    Article  Google Scholar 

  36. Neishi, Y., S. Mochizuki, T. Miyasaka, T. Kawamoto, T. Kume, R. Sukmawan, M. Tsukiji, Y. Ogasawara, F. Kajiya, T. Akasaka, K. Yoshida, and M. Goto. Evaluation of bioavailability of nitric oxide in coronary circulation by direct measurement of plasma nitric oxide concentration. Proc. Natl. Acad. Sci. USA 102:11456–11461, 2005.

    Article  Google Scholar 

  37. Pani, B., and B. B. Singh. Lipid rafts/caveolae as microdomains of calcium signaling. Cell Calcium 45:625–633, 2009.

    Article  Google Scholar 

  38. Peterson, T. E., V. Poppa, H. Ueba, A. Wu, C. Yan, and B. C. Berk. Opposing effects of reactive oxygen species and cholesterol on endothelial nitric oxide synthase and endothelial cell caveolae. CircRes 85:29–37, 1999.

    Google Scholar 

  39. Plotnick, G. D., M. C. Corretti, R. A. Vogel, R. Hesslink, and J. A. Wise. Effect of supplemental phytonutrients on impairment of the flow-mediated brachial artery vasoactivity after a single high-fat meal. J. Am. Coll. Cardiol. 41:1744–1749, 2003.

    Article  Google Scholar 

  40. Saini, H. K., A. S. Arneja, and N. S. Dhalla. Role of cholesterol in cardiovascular dysfunction. Can. J. Cardiol. 20:333–346, 2004.

    Google Scholar 

  41. Shaul, P. W. Endothelial nitric oxide synthase, caveolae and the development of atherosclerosis. J. Physiol. 547:21–33, 2003.

    Article  Google Scholar 

  42. Troup, G. M., Y. Xie, K. Boesze-Battaglia, Y. Huang, T. Kirk, F. Hanley, and T. N. Tulenko. Membrane Cholesterol and the Formation of Cholesterol Domains in the Pathogenesis of Cardiovascular Disease. V C H Verlag Gmbh: Wiley, p. 25, 2004.

    Google Scholar 

  43. Troup, G. M., Y. Xie, K. Boesze-Battaglia, Y. Huang, T. Kirk, F. Hanley, and T. N. Tulenko. Membrane cholesterol and the formation of cholesterol domains in the pathogenesis of cardiovascular disease. Macromol. Symp. 219:25–38, 2005.

    Article  Google Scholar 

  44. Tulenko, T. N., M. Chen, P. E. Mason, and R. P. Mason. Physical effects of cholesterol on arterial smooth muscle membranes: evidence of immiscible cholesterol domains and alterations in bilayer width during atherogenesis. J. Lipid Res. 39:947–956, 1998.

    Google Scholar 

  45. Vogel, R. A., M. C. Corretti, and G. D. Plotnick. Effect of a single high-fat meal on endothelial function in healthy subjects. Am. J. Cardiol. 79:350–354, 1997.

    Article  Google Scholar 

  46. Wang, T. K., Z. Chen, X. Wang, J. Y. J. Shyy, and Y. Zhu. Cholesterol loading increases the translocation of ATP synthase beta chain into membrane caveolae in vascular endothelial cells. BBA Mol. Cell Biol. Lipids 1761:1182–1190, 2006.

    Article  Google Scholar 

  47. Xu, Y., R. H. Henning, J. J. van der Want, A. van Buiten, W. H. van Gilst, and H. Buikema. Disruption of endothelial caveolae is associated with impairment of both NO- as well as EDHF in acetylcholine-induced relaxation depending on their relative contribution in different vascular beds. Life Sci. 80:1678–1685, 2007.

    Article  Google Scholar 

  48. Yuan, Y., L. K. Verna, N. P. Wang, H. L. Liao, K. S. Ma, Y. Wang, Y. Zhu, and M. B. Stemerman. Cholesterol enrichment upregulates intercellular adhesion molecule-1 in human vascular endothelial cells. BBA Mol. Cell Biol. Lipids 1534:139–148, 2001.

    Article  Google Scholar 

  49. Zhang, Q., J. E. Church, D. Jagnandan, J. D. Catravas, W. C. Sessa, and D. Fulton. Functional relevance of Golgi- and plasma membrane-localized endothelial NO synthase in reconstituted endothelial cells. Arterioscler Thromb. Vasc. Biol. 26:1015–1021, 2006.

    Article  Google Scholar 

  50. Zidovetzki, R., and I. Levitan. Use of cyclodextrins to manipulate plasma membrane cholesterol content: Evidence, misconceptions and control strategies. Biochim. Biophys. Acta Biomembr. 1768:1311–1324, 2007.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the following funding sources for this project: NIH/HL068164 (DJ, KAB), NSF/BES0301446 (DJ, KAB), NSF/CBET0730547 (DJ, KAB), NIH U01HL116256 (DJ, KAB, DGB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allison M. Andrews.

Ethics declarations

Conflict of interest

Ms. Muzorewa, Ms. Zaccheo, and Dr. Buerk have nothing to disclose. Dr. Andrews, Dr. Jaron and Dr. Barbee have a patent 8,828,711 issued.

Ethical standards

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

Additional information

Associate Editor William H. Guilford oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrews, A.M., Muzorewa, T.T., Zaccheo, K.A. et al. Cholesterol Enrichment Impairs Capacitative Calcium Entry, eNOS Phosphorylation & Shear Stress-Induced NO Production. Cel. Mol. Bioeng. 10, 30–40 (2017). https://doi.org/10.1007/s12195-016-0456-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-016-0456-5

Keywords

Navigation