Skip to main content
Log in

O-GlcNAc-ylation in the Nuclear Pore Complex

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

O-GlcNAc-ylation is the post-translational addition of an O-linked β-N-acetylglucosamine to the serine and threonine residues of thousands of proteins in eukaryotic cells. Specifically, half of the thirty different types of protein components in the nuclear pore complex (NPC) are modified by O-GlcNAc, of which the majority are intrinsically disordered nucleoporins (Nups) containing multiple phenylalanine-glycine (FG) repeats. Moreover, these FG-Nups form a strict selectivity barrier with a high density of O-GlcNAc in the NPC to mediate bidirectional trafficking between the cytoplasm and nucleus. However, the roles that O-GlcNAc plays in the structure and function of the NPC remain obscure. In this review paper, we will discuss the current knowledge of O-GlcNAc-ylated Nups, highlight some new techniques used to probe O-GlcNAc’s roles in the nuclear pore, and finally propose a new model for the effect of O-GlcNAc on the NPC’s permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1

Similar content being viewed by others

References

  1. Akey, C. W., and M. Radermacher. Architecture of the Xenopus nuclear pore complex revealed by three-dimensional cryo-electron microscopy. J. Cell Biol. 122(1):1–19, 1993.

    Article  Google Scholar 

  2. Beck, M., F. Forster, et al. Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306(5700):1387–1390, 2004.

    Article  Google Scholar 

  3. Blatch, G. L., and M. Lassle. The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. BioEssays 21(11):932–939, 1999.

    Article  Google Scholar 

  4. Bond, M. R., and J. A. Hanover. A little sugar goes a long way: the cell biology of O-GlcNAc. J. Cell Biol. 208(7):869–880, 2015.

    Article  Google Scholar 

  5. Buse, M. G. Hexosamines, insulin resistance, and the complications of diabetes: current status. Am. J. Physiol. Endocrinol. Metab. 290(1):E1–E8, 2006.

    Article  MathSciNet  Google Scholar 

  6. Butkinaree, C., K. Park, et al. O-linked beta-N-acetylglucosamine (O-GlcNAc): extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Biochim. Biophys. Acta 1800(2):96–106, 2010.

    Article  Google Scholar 

  7. Chikanishi, T., R. Fujiki, et al. Glucose-induced expression of MIP-1 genes requires O-GlcNAc transferase in monocytes. Biochem. Biophys. Res. Commun. 394(4):865–870, 2010.

    Article  Google Scholar 

  8. Chou, T. Y., and G. W. Hart. O-linked N-acetylglucosamine and cancer: messages from the glycosylation of c-Myc. Adv. Exp. Med. Biol. 491:413–418, 2001.

    Article  Google Scholar 

  9. Chou, C. F., A. J. Smith, et al. Characterization and dynamics of O-linked glycosylation of human cytokeratin 8 and 18. J. Biol. Chem. 267(6):3901–3906, 1992.

    Google Scholar 

  10. Clark, P. M., J. F. Dweck, et al. Direct in-gel fluorescence detection and cellular imaging of O-GlcNAc-modified proteins. J. Am. Chem. Soc. 130(35):11576–11577, 2008.

    Article  Google Scholar 

  11. Copeland, R. J., J. W. Bullen, et al. Cross-talk between GlcNAcylation and phosphorylation: roles in insulin resistance and glucose toxicity. Am. J. Physiol. Endocrinol. Metab. 295(1):E17–E28, 2008.

    Article  Google Scholar 

  12. Crampton, N., M. Kodiha, et al. Oxidative stress inhibits nuclear protein export by multiple mechanisms that target FG nucleoporins and Crm1. Mol. Biol. Cell 20(24):5106–5116, 2009.

    Article  Google Scholar 

  13. D’Angelo, M. A., and M. W. Hetzer. Structure, dynamics and function of nuclear pore complexes. Trends Cell Biol. 18(10):456–466, 2008.

    Article  Google Scholar 

  14. Dieterich, D. C., and M. R. Kreutz. Proteomics of the synapse—a quantitative approach to neuronal plasticity. Mol. Cell. Proteomics, p. mcp-R115, 2015.

  15. Favreau, C., H. J. Worman, et al. Cell cycle-dependent phosphorylation of nucleoporins and nuclear pore membrane protein Gp210. Biochemistry 35(24):8035–8044, 1996.

    Article  Google Scholar 

  16. Finlay, D. R., and D. J. Forbes. Reconstitution of biochemically altered nuclear pores: transport can be eliminated and restored. Cell 60(1):17–29, 1990.

    Article  Google Scholar 

  17. Frey, S., and D. Gorlich. A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell 130(3):512–523, 2007.

    Article  Google Scholar 

  18. Gambetta, M. C., K. Oktaba, et al. Essential role of the glycosyltransferase sxc/Ogt in polycomb repression. Science 325(5936):93–96, 2009.

    Article  Google Scholar 

  19. Goldberg, M. W., and T. D. Allen. High resolution scanning electron microscopy of the nuclear envelope: demonstration of a new, regular, fibrous lattice attached to the baskets of the nucleoplasmic face of the nuclear pores. J. Cell Biol. 119(6):1429–1440, 1992.

    Article  Google Scholar 

  20. Gupta, R., and S. Brunak. Prediction of glycosylation across the human proteome and the correlation to protein function. Pac. Symp. Biocomput. 20022002:310–322, 2002.

    Google Scholar 

  21. Gut, P., and E. Verdin. The nexus of chromatin regulation and intermediary metabolism. Nature 502(7472):489–498, 2013.

    Article  Google Scholar 

  22. Hanover, J. A., C. K. Cohen, et al. O-linked N-acetylglucosamine is attached to proteins of the nuclear pore. Evidence for cytoplasmic and nucleoplasmic glycoproteins. J. Biol. Chem. 262(20):9887–9894, 1987.

    Google Scholar 

  23. Hanover, J. A., S. Yu, et al. Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene. Arch. Biochem. Biophys. 409(2):287–297, 2003.

    Article  Google Scholar 

  24. Hart, G. W., M. P. Housley, et al. Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446(7139):1017–1022, 2007.

    Article  Google Scholar 

  25. Harwood, K. R., and J. A. Hanover. Nutrient-driven O-GlcNAc cycling—think globally but act locally. J. Cell Sci. 127(9):1857–1867, 2014.

    Article  Google Scholar 

  26. Hicks, G. R., and N. V. Raikhel. Protein import into the nucleus: an integrated view. Annu. Rev. Cell Dev. Biol. 11:155–188, 1995.

    Article  Google Scholar 

  27. Hinshaw, J. E., B. O. Carragher, et al. Architecture and design of the nuclear pore complex. Cell 69(7):1133–1141, 1992.

    Article  Google Scholar 

  28. Holt, G. D., C. M. Snow, et al. Nuclear pore complex glycoproteins contain cytoplasmically disposed O-linked N-acetylglucosamine. J. Cell Biol. 104(5):1157–1164, 1987.

    Article  Google Scholar 

  29. Hulsmann, B. B., A. A. Labokha, et al. The permeability of reconstituted nuclear pores provides direct evidence for the selective phase model. Cell 150(4):738–751, 2012.

    Article  Google Scholar 

  30. Jia, C. Z., T. Liu, et al. O-GlcNAcPRED: a sensitive predictor to capture protein O-GlcNAcylation sites. Mol. Biosyst. 911:2909–2913, 2013.

    Article  Google Scholar 

  31. Jinek, M., J. Rehwinkel, et al. The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin alpha. Nat. Struct. Mol. Biol. 11(10):1001–1007, 2004.

    Article  Google Scholar 

  32. Kim, E. J., L. K. Abramowitz, et al. Versatile O-GlcNAc transferase assay for high-throughput identification of enzyme variants, substrates, and inhibitors. Bioconjug. Chem. 25(6):1025–1030, 2014.

    Article  Google Scholar 

  33. Kodiha, M., A. Chu, et al. Multiple mechanisms promote the inhibition of classical nuclear import upon exposure to severe oxidative stress. Cell Death Differ. 11(8):862–874, 2004.

    Article  Google Scholar 

  34. Kodiha, M., N. Crampton, et al. Traffic control at the nuclear pore. Nucleus 1(3):237–244, 2010.

    Article  Google Scholar 

  35. Kodiha, M., D. Tran, et al. Dissecting the signaling events that impact classical nuclear import and target nuclear transport factors. PLoS One 4(12):e8420, 2009.

    Article  Google Scholar 

  36. Kreppel, L. K., M. A. Blomberg, et al. Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J. Biol. Chem. 272(14):9308–9315, 1997.

    Article  Google Scholar 

  37. Labokha, A. A., S. Gradmann, et al. Systematic analysis of barrier-forming FG hydrogels from Xenopus nuclear pore complexes. EMBO J. 32(2):204–218, 2013.

    Article  Google Scholar 

  38. Laczy, B., B. G. Hill, et al. Protein O-GlcNAcylation: a new signaling paradigm for the cardiovascular system. Am. J. Physiol. Heart Circ. Physiol. 296(1):H13–H28, 2009.

    Article  Google Scholar 

  39. Lazarus, B. D., D. C. Love, et al. O-GlcNAc cycling: implications for neurodegenerative disorders. Int. J. Biochem. Cell Biol. 41(11):2134–2146, 2009.

    Article  Google Scholar 

  40. Letschert, S., A. Gohler, et al. Super-resolution imaging of plasma membrane glycans. Angew. Chem. Int. Ed. Engl. 53(41):10921–10924, 2014.

    Article  Google Scholar 

  41. Li, B., and J. J. Kohler. Glycosylation of the nuclear pore. Traffic 15(4):347–361, 2014.

    Article  Google Scholar 

  42. Love, D. C., J. Kochan, et al. Mitochondrial and nucleocytoplasmic targeting of O-linked GlcNAc transferase. J. Cell Sci. 116(4):647–654, 2003.

    Article  Google Scholar 

  43. Ma, J., A. Goryaynov, et al. Self-regulated viscous channel in the nuclear pore complex. Proc. Natl. Acad. Sci. USA 109(19):7326–7331, 2012.

    Article  Google Scholar 

  44. Ma, J., and G. W. Hart. O-GlcNAc profiling: from proteins to proteomes. Clin. Proteomics 11(1):8, 2014.

    Article  Google Scholar 

  45. Ma, J., and W. Yang. Three-dimensional distribution of transient interactions in the nuclear pore complex obtained from single-molecule snapshots. Proc. Natl. Acad. Sci. USA 107(16):7305–7310, 2010.

    Article  MathSciNet  Google Scholar 

  46. Macauley, M. S., Y. He, et al. Inhibition of O-GlcNAcase using a potent and cell-permeable inhibitor does not induce insulin resistance in 3T3-L1 adipocytes. Chem. Biol. 17(9):937–948, 2010.

    Article  Google Scholar 

  47. Miller, M. W., and J. A. Hanover. Functional nuclear pores reconstituted with beta 1-4 galactose-modified O-linked N-acetylglucosamine glycoproteins. J. Biol. Chem. 269(12):9289–9297, 1994.

    Google Scholar 

  48. Ozcan, S., S. S. Andrali, et al. Modulation of transcription factor function by O-GlcNAc modification. Biochim. Biophys. Acta 1799(5–6):353–364, 2010.

    Article  Google Scholar 

  49. Park, M. K., M. D’Onofrio, et al. A monoclonal antibody against a family of nuclear pore proteins (nucleoporins): O-linked N-acetylglucosamine is part of the immunodeterminant. Proc. Natl. Acad. Sci. USA 84(18):6462–6466, 1987.

    Article  Google Scholar 

  50. Parker, G., R. Taylor, et al. Hyperglycemia and inhibition of glycogen synthase in streptozotocin-treated mice: role of O-linked N-acetylglucosamine. J. Biol. Chem. 279(20):20636–20642, 2004.

    Article  Google Scholar 

  51. Powers, M. A., C. Macaulay, et al. Reconstituted nuclei depleted of a vertebrate GLFG nuclear pore protein, p97, import but are defective in nuclear growth and replication. J. Cell Biol. 128(5):721–736, 1995.

    Article  Google Scholar 

  52. Radermacher, P. T., F. Myachina, et al. O-GlcNAc reports ambient temperature and confers heat resistance on ectotherm development. Proc. Natl. Acad. Sci. USA 111(15):5592–5597, 2014.

    Article  Google Scholar 

  53. Reeves, R. A., A. Lee, et al. Characterization of the specificity of O-GlcNAc reactive antibodies under conditions of starvation and stress. Anal. Biochem. 457:8–18, 2014.

    Article  Google Scholar 

  54. Ribbeck, K., and D. Gorlich. Kinetic analysis of translocation through nuclear pore complexes. EMBO J. 20(6):1320–1330, 2001.

    Article  Google Scholar 

  55. Ribbeck, K., and D. Gorlich. The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion. EMBO J. 21(11):2664–2671, 2002.

    Article  Google Scholar 

  56. Roquemore, E. P., M. R. Chevrier, et al. Dynamic O-GlcNAcylation of the small heat shock protein alpha B-crystallin. Biochemistry 35(11):3578–3586, 1996.

    Article  Google Scholar 

  57. Sinclair, D. A., M. Syrzycka, et al. Drosophila O-GlcNAc transferase (OGT) is encoded by the Polycomb group (PcG) gene, super sex combs (sxc). Proc. Natl. Acad. Sci. USA 106(32):13427–13432, 2009.

    Article  Google Scholar 

  58. Slawson, C., T. Lakshmanan, et al. A mitotic GlcNAcylation/phosphorylation signaling complex alters the posttranslational state of the cytoskeletal protein vimentin. Mol. Biol. Cell 19(10):4130–4140, 2008.

    Article  Google Scholar 

  59. Snow, C. M., A. Senior, et al. Monoclonal antibodies identify a group of nuclear pore complex glycoproteins. J. Cell Biol. 104(5):1143–1156, 1987.

    Article  Google Scholar 

  60. Sterne-Marr, R., J. M. Blevitt, et al. O-linked glycoproteins of the nuclear pore complex interact with a cytosolic factor required for nuclear protein import. J. Cell Biol. 116(2):271–280, 1992.

    Article  Google Scholar 

  61. Taylor, R. P., G. J. Parker, et al. Glucose deprivation stimulates O-GlcNAc modification of proteins through up-regulation of O-linked N-acetylglucosaminyltransferase. J. Biol. Chem. 283(10):6050–6057, 2008.

    Article  Google Scholar 

  62. Trinidad, J. C., D. T. Barkan, et al. Global identification and characterization of both O-GlcNAcylation and phosphorylation at the murine synapse. Mol. Cell. Proteomics 11(8):215–229, 2012.

    Article  Google Scholar 

  63. van de Linde, S., A. Loschberger, et al. Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat. Protoc. 6(7):991–1009, 2011.

    Article  Google Scholar 

  64. Vocadlo, D. J., H. C. Hang, et al. A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc. Natl. Acad. Sci. USA 100(16):9116–9121, 2003.

    Article  Google Scholar 

  65. Vosseller, K., L. Wells, et al. Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3-L1 adipocytes. Proc. Natl. Acad. Sci. USA 99(8):5313–5318, 2002.

    Article  Google Scholar 

  66. Wang, S., X. Huang, et al. Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates Akt signaling. PLoS One 75:e37427, 2012.

    Article  Google Scholar 

  67. Wang, J., M. Torii, et al. dbOGAP—an integrated bioinformatics resource for protein O-GlcNAcylation. BMC Bioinform. 12:91, 2011.

    Article  Google Scholar 

  68. Wells, L., K. Vosseller, et al. Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291(5512):2376–2378, 2001.

    Article  Google Scholar 

  69. Zachara, N. E., N. O’Donnell, et al. Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J. Biol. Chem. 279(29):30133–30142, 2004.

    Article  Google Scholar 

  70. Zhu, Y., T. W. Liu, et al. Post-translational O-GlcNAcylation is essential for nuclear pore integrity and maintenance of the pore selectivity filter. J Mol. Cell Biol. 2015.

Download references

Acknowledgments

The Project was supported by Grants from the National Institutes of Health (NIH GM094041, GM097037 and GM116204).

Conflict of interest

Andrew Ruba and Weidong Yang declare that they have no conflicts of interest.

Ethical Standards

No human studies were carried out by the authors of this article. No animal studies were carried out by the authors of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Yang.

Additional information

Associate Editor G.W. Gant Luxton oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruba, A., Yang, W. O-GlcNAc-ylation in the Nuclear Pore Complex. Cel. Mol. Bioeng. 9, 227–233 (2016). https://doi.org/10.1007/s12195-016-0440-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-016-0440-0

Keywords

Navigation