Skip to main content
Log in

Integrins Direct Cell Adhesion in a Substrate-Dependent Manner

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

The relationship between substrate properties and cell behavior is complex, including roles for both mechanics and biochemistry. Here we investigate the role of viscous dissipation on cell adhesion behaviors, using polymer films of tunable lateral mobility. We find that fibroblasts selectively use \(\alpha _v \beta _3\) and \(\alpha _5 \beta _1\) integrin receptors to control their spreading area and polarization on low and high mobility films, respectively. In addition, the dynamics of cell spreading and polarization are well described by a semi-empirical sigmoidal relationship. Analysis of cell dynamic behavior reveals that spreading dynamics are controlled by the availability of integrins, whereas the polarization dynamics are controlled by intracellular signaling. The result that cells preferentially use specific integrin receptors in response to substrate mechanical properties has broad implications for processes in dynamic environments such as wound healing and cancer metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Antia, M., G. Baneyx, K. E. Kubow, and V. Vogel. Fibronectin in aging extracellular matrix fibrils is progressively unfolded by cells and elicits an enhanced rigidity response. Faraday Discuss. 139:229–249; discussion 309–25, 419–20, 2008.

    Article  Google Scholar 

  2. Bardsley, W. G., and J. D. Aplin, Kinetic analysis of cell spreading. I. Theory and modelling of curves. J. Cell Sci. 61:365–373, 1983.

    Google Scholar 

  3. Boettiger, D. Mechanical control of integrin-mediated adhesion and signaling. Curr. Opin. Cell Biol. 24:592–599, 2012.

    Article  Google Scholar 

  4. Cao, L., M. K. Zeller, V. F. Fiore, P. Strane, H. Bermudez, and T. H. Barker, Phage-based molecular probes that discriminate force-induced structural states of fibronectin in vivo. Proc. Natl. Acad. Sci USA 109:7251–7256, 2012.

    Article  Google Scholar 

  5. Chen, C., M. Mrksich, S. Huang, G. Whitesides, and D. Ingber, Geometric control of cell life and death. Science 276:1425–1428, 1997.

    Article  Google Scholar 

  6. Chen, W. Y., and G. Abatangelo. Functions of hyaluronan in wound repair. Wound Repair Regen. 7:79–89, 1999.

    Article  MATH  Google Scholar 

  7. Chen, X., Y.-D. Su, V. Ajeti, S.-J. Chen, and P. J. Campagnola, Cell adhesion on micro-structured fibronectin gradients fabricated by multiphoton excited photochemistry.Cell Mol. Bioeng. 5:307–319, 2012.

    Article  Google Scholar 

  8. Cox, E. A., S. K. Sastry, and A. Huttenlocher, Integrin-mediated adhesion regulates cell polarity and membrane protrusion through the Rho family of GTPases. Mol. Biol. Cell 12:265–77, 2001.

    Article  Google Scholar 

  9. Cretel, E., A. Pierres, A.-M. Benoliel, and P. Bongrand, How Cells feel their environment: a focus on early dynamic events. Cell Mol. Bioeng. 1:5–14, 2008.

    Article  Google Scholar 

  10. Cuvelier, D., M. Théry, Y.-S. Chu, S. Dufour, J.-P. Thiéry, M. Bornens, P. Nassoy, and L. Mahadevan, The universal dynamics of cell spreading. Curr. Biol. 17:694–699, 2007.

    Article  Google Scholar 

  11. Döbereiner, H.-G., B. Dubin-Thaler, G. Giannone, H. S. Xenias, and M. P. Sheetz, Dynamic phase transitions in cell spreading. Phys. Rev. Lett. 93:108105, 2004.

    Article  Google Scholar 

  12. Drubin, D. G., and W. J. Nelson, Origins of cell polarity. Cell 84:335–344, 1996.

    Article  Google Scholar 

  13. Dumbauld, D. W., H. Shin, N. D. Gallant, K. E. Michael, H. Radhakrishna, and A. J. Garcia, Contractility modulates cell adhesion strengthening through focal adhesion kinase and assembly of vinculin-containing focal adhesions. J. Cell. Physiol. 223:746–756, 2010.

    Google Scholar 

  14. Engler, A., L. Bacakova, C. Newman, A. Hategan, M. Griffin, and D. Discher, Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86:617–628, 2004.

    Article  Google Scholar 

  15. Friedland, J. C., M. H. Lee, and D. Boettiger, Mechanically activated integrin switch controls alpha5beta1 function. Science 323:642–644, 2009.

    Article  Google Scholar 

  16. García, A. J., P. Ducheyne, and D. Boettiger, Quantification of cell adhesion using a spinning disc device and application to surface-reactive materials. Biomaterials 18:1091–1098, 1997.

    Article  Google Scholar 

  17. Giannone, G., B. J. Dubin-Thaler, O. Rossier, Y. Cai, O. Chaga, G. Jiang, W. Beaver, H.-G. Döbereiner, Y. Freund, G. Borisy, and M. P. Sheetz, Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell 128:561–575, 2007.

    Article  Google Scholar 

  18. Gupta, S. K., and N. E. Vlahakis, Integrin alpha9beta1 mediates enhanced cell migration through nitric oxide synthase activity regulated by Src tyrosine kinase. J. Cell Sci. 122:2043–2054, 2009.

    Article  Google Scholar 

  19. Hynes, R., Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687, 2002.

    Article  Google Scholar 

  20. Hynes, R. O., The dynamic dialogue between cells and matrices: implications of fibronectin’s elasticity. Proc. Natl. Acad. Sci. USA. 96:2588–2590, 1999.

    Article  Google Scholar 

  21. Ingber, D. E., Mechanosensation through integrins: cells act locally but think globally. Proc. Natl. Acad. Sci. USA 100:1472–1474, 2003.

    Article  Google Scholar 

  22. Jiang, G., A. H. Huang, Y. Cai, M. Tanase, and M. P. Sheetz, Rigidity sensing at the leading edge through alphavbeta3 integrins and RPTPalpha. Biophys. J. 90:1804–1809, 2006.

    Article  Google Scholar 

  23. Kernochan, L., B. Tran, P. Tangkijvanich, A. Melton, S. Tam, and H. Yee, Endothelin-1 stimulates human colonic myofibroblast contraction and migration. Gut 50:65–70, 2002.

    Article  Google Scholar 

  24. Kourouklis, A. P., R. V. Lerum, and H. Bermudez, Cell adhesion mechanisms on laterally mobile polymer films. Biomaterials 35:4827–4834, 2014.

    Article  Google Scholar 

  25. Lakshmikanthan, S., M. Sobczak, C. Chun, A. Henschel, J. Dargatz, R. Ramchandran, and M. Chrzanowska-Wodnicka, Rap1 promotes VEGFR2 activation and angiogenesis by a mechanism involving integrin \(\alpha_v \beta_3\). Blood 118:2015–2026, 2011.

    Article  Google Scholar 

  26. Lerum, R. V., and H. Bermudez, Controlled interfacial assembly and transfer of brushlike copolymer films. ChemPhysChem 11:665–669, 2010.

    Article  Google Scholar 

  27. Lutolf, M. P., and J. A. Hubbell, Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23:47–55, 2005.

    Article  Google Scholar 

  28. Maheshwari, G., G. Brown, D. Lauffenburger, A. Wells, and L. Griffith, Cell adhesion and motility depend on nanoscale RGD clustering. J. Cell Sci. 113:1677–1686, 2000.

    Google Scholar 

  29. Massia, S. P., and J. A. Hubbell, An RGD spacing of 440 nm is sufficient for integrin alpha V beta 3-mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. J. Cell Biol. 114:1089–1100, 1991.

    Article  Google Scholar 

  30. Pierschbacher, M. D., and E. Ruoslahti, Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309:30–33, 1984.

    Article  Google Scholar 

  31. Rape, A. D., W.-H. Guo, and Y.-L. Wang, The regulation of traction force in relation to cell shape and focal adhesions. Biomaterials 32:2043–2051, 2011.

    Article  Google Scholar 

  32. Roca-Cusachs, P., T. Iskratsch, and M. P. Sheetz, Finding the weakest link: exploring integrin-mediated mechanical molecular pathways. J. Cell Sci. 125:3025–3038, 2012.

    Article  Google Scholar 

  33. Rossier, O., V. Octeau, J.-B. Sibarita, C. Leduc, B. Tessier, D. Nair, V. Gatterdam, O. Destaing, C. Albigès-Rizo, R. Tampé, L. Cognet, D. Choquet, B. Lounis, and G. Giannone, Integrins ?1 and ?3 exhibit distinct dynamic nanoscale organizations inside focal adhesions. Nat. Cell Biol. 14:1057–1067, 2012.

    Article  Google Scholar 

  34. Schiller, H. B., M.-R. Hermann, J. Polleux, T. Vignaud, S. Zanivan, C. C. Friedel, Z. Sun, A. Raducanu, K.-E. Gottschalk, M. Théry, M. Mann, and R. Fässler, ?1- and v-class integrins cooperate to regulate myosin II during rigidity sensing of fibronectin-based microenvironments. Nat. Cell Biol. 15:625–636, 2013.

    Article  Google Scholar 

  35. Schwarz, U. S., N. Q. Balaban, D. Riveline, A. Bershadsky, B. Geiger, and S. A. Safran, Calculation of forces at focal adhesions from elastic substrate data: the effect of localized force and the need for regularization. Biophys. J. 83:1380–1394, 2002.

    Article  Google Scholar 

  36. Sen, S., A. J. Engler, and D. E. Discher, Matrix strains induced by cells: Computing how far cells can feel. Cell Mol. Bioeng. 2:39–48, 2009.

    Article  Google Scholar 

  37. Sen, S., and S. Kumar, Cell-matrix de-adhesion dynamics reflect contractile mechanics. Cell Mol. Bioeng. 2:218–230, 2009.

    Article  Google Scholar 

  38. Shankarraman, V., M. M. Shah, and M. R. Caplan, Substrates elicit different patterns of intracellular signaling which in turn cause differences in cell adhesion. Cell Mol. Bioeng. 3:229–246, 2010.

    Article  Google Scholar 

  39. Solon, J., I. Levental, K. Sengupta, P. C. Georges, and P. A. Janmey, Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys. J. 93:4453–4461, 2007.

    Article  Google Scholar 

  40. Stroka, K. M., and H. Aranda-Espinoza, Neutrophils display biphasic relationship between migration and substrate stiffness. Cell Motil. Cytoskeleton 66:328–341, 2009.

    Article  Google Scholar 

  41. Yamada, K. M., R. Pankov, and E. Cukierman, Dimensions and dynamics in integrin function. Braz. J. Med. Biol. Res. 36:959–966, 2003.

    Article  Google Scholar 

  42. Yamana, N., Y. Arakawa, T. Nishino, K. Kurokawa, M. Tanji, R. E. Itoh, J. Monypenny, T. Ishizaki, H. Bito, K. Nozaki, N. Hashimoto, M. Matsuda, and S. Narumiya, The Rho-mDia1 pathway regulates cell polarity and focal adhesion turnover in migrating cells through mobilizing Apc and c-Src. Mol. Cell. Biol. 26:6844–6858, 2006.

    Article  Google Scholar 

  43. Yeung, T., P. Georges, L. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, and P. Janmey, Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton 60:24–34, 2005.

    Article  Google Scholar 

  44. Zamir, E., and B. Geiger, Molecular complexity and dynamics of cell-matrix adhesions. J. Cell Sci. 114:3583–3590, 2001.

    Google Scholar 

Download references

Acknowledgments

We thank S. Peyton, T. Barker, and D. Discher for helpful discussions. We acknowledge the NSF for financial support (DMR-0847558) and the MRSEC at UMass-Amherst (DMR-0820506) for use of their facilities.

Conflict of interest

A.P.K. and H.B. declare that they have no conflict of interest.

Statements of Human and Animal Rights and Informed Consent

No human or animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Bermudez.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 622 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kourouklis, A.P., Bermudez, H. Integrins Direct Cell Adhesion in a Substrate-Dependent Manner. Cel. Mol. Bioeng. 8, 488–495 (2015). https://doi.org/10.1007/s12195-015-0394-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-015-0394-7

Keywords

Navigation