Skip to main content
Log in

Endothelial Cell Response Under Hydrostatic Pressure Condition Mimicking Pressure Therapy

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Chronic wounds increase the risk of infection and may lead to complications or disease. Although treatment techniques involving topical negative pressure have been used widely to promote wound healing, the relationship between promotion of wound healing and negative pressure remains unclear. In the present study, we studied the effects of hydrostatic pressure (HP) on endothelial cells (ECs) during pressure treatment. We examined the morphologic and functional responses of ECs to HP using an experimental system developed to apply both negative and positive pressure to ECs. Morphologic parameters such as aspect ratio, orientation angle, and tortuosity did not change after exposure to HP for up to 24 h. In contrast, application of HP led to significant changes in cell area and cell density, and the formation of intercellular gaps was observed as early as 3 h before the cell density reached its peak value. We also found HP progressed EC cycle, which remained at rest according to contact inhibition. Although there were some differences with respect to trends in changes in those parameters, positive and negative pressures had similar effects on ECs. Considering the results of this study, we conclude that exposure to HP enhances the proliferation of ECs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Argenta, L. C., and M. J. Morykwas. Vacuum-assisted closure: a new method for wound control and treatment: clinical experience. Ann. Plast. Surg. 38:563–576, 1997.

    Article  Google Scholar 

  2. Atkins, P., and J. de Paula. Atkins’ Physical Chemistry (8th ed.). Oxford: Oxford University Press, 2006.

    Google Scholar 

  3. Baldwin, C., M. Potter, E. Clayton, L. Irvine, and J. Dye. Topical negative pressure stimulates endothelial migration and proliferation: a suggested mechanism for improved integration of Integra. Ann. Plast. Surg. 62:92–96, 2009.

    Article  Google Scholar 

  4. DeFranzo, A. J., L. C. Argenta, M. W. Marks, J. A. Molnar, L. R. David, L. X. Webb, W. G. Ward, and R. G. Teasdall. The use of vacuum-assisted closure therapy for the treatment of lower-extremity wounds with exposed bone. Plast. Recpnstr. Surg. 108:1184–1191, 2001.

    Article  Google Scholar 

  5. Fisher, A. B., S. Chien, I. A. Barakat, and R. M. Nerem. Endothelial cellular response to altered shear stress. Am. J. Lung Cell Mol. Physiol. 281:529–533, 2001.

    Google Scholar 

  6. Gardel, M. L., J. H. Shin, F. C. MacKintosh, L. Mahadevan, P. Matsudaira, and D. A. Weitz. Elastic behavior of cross-linked and bundled actin networks. Science 304:1301–1305, 2004.

    Article  Google Scholar 

  7. Genecov, D. G., A. M. Schneider, M. J. Morykwas, D. Parker, W. L. White, and L. C. Argenta. A controlled subatmospheric pressure dressing increases the rate of skin graft donor site reepithelialization. Ann. Plast. Surg. 40:219–225, 1998.

    Article  Google Scholar 

  8. Hothorn, T., and B. S. Everitt. A Handbook of Statistical Analyses Using R (3rd ed.). Boca Raton: Chapman & Hall/CRC, 2014.

    MATH  Google Scholar 

  9. Hsu, C. C., W. C. Tsai, C. P. Chen, Y. M. Lu, and J. S. Wang. Effects of negative pressures on epithelial tight junctions and migration in wound healing. Am. J. Physiol. Cell Physiol. 299:C528–C534, 2010.

    Article  Google Scholar 

  10. Ito, T., and M. Yamazaki. The “Le Chatelier’s principle”-governed response of actin filaments to osmotic stress. J. Phys. Chem. B 110:13572–13581, 2006.

    Article  Google Scholar 

  11. Lambert, K. V., P. Hayes, and M. McCarthy. Vacuum assisted closure: a review of development and current applications. Eur. J. Vasc. Endovasc. Surg. 29:219–226, 2005.

    Article  Google Scholar 

  12. Müller-Marschhausen, K., J. Waschke, and D. Drenckhahn. Physiological hydrostatic pressure protects endothelial monolayer integrity. Am. J. Physiol. Cell Physiol. 294:C324–C332, 2008.

    Article  Google Scholar 

  13. Noren, N. K., C. M. Niessen, B. M. Gumbiner, and K. Burridge. Cadherin engagement regulates Rho family GTPases. J. Biol. Chem. 276:33305–33308, 2001.

    Article  Google Scholar 

  14. Ohashi, T., K. Segawa, N. Sakamoto, and M. Sato. Effect of hydrostatic pressure on the morphology and expression of VE-cadherin in HUVEC. Trans. Jpn. Soc. Med. Biol. Eng. BME 44:454–459, 2006.

    Google Scholar 

  15. Ohashi, T., Y. Sugaya, N. Sakamoto, and M. Sato. Hydrostatic pressure influences morphology and expression of VE-cadherin of vascular endothelial cells. J. Biomech. 40:2399–2405, 2007.

    Article  Google Scholar 

  16. Pujol, T., O. du Roure, M. Fermigier, and J. Heuvingh. Impact of branching on the elasticity of actin networks. Proc. Natl. Acad. Sci. USA 109:10364–10369, 2012.

    Article  Google Scholar 

  17. Salwen, S. A., D. H. Szarowski, J. N. Turner, and R. Bizios. Three-dimensional changes of the cytoskeleton of vascular endothelial cells exposed to sustained hydrostatic pressure. Med. Biol. Eng. Comput. 36:520–527, 1998.

    Article  Google Scholar 

  18. Sato, M., and T. Ohashi. Biorheological views of endothelial cell responses to mechanical stimuli. Biorheology 42:421–441, 2005.

    Google Scholar 

  19. Schwartz, E. A., R. Bizios, M. S. Medow, and M. E. Gerritsen. Exposure of human vascular endothelial cells to sustained hydrostatic pressure stimulates proliferation. Involvement of the alphaV integrins. Circ. Res. 84:315–322, 1999.

    Article  Google Scholar 

  20. Sugaya, Y., N. Sakamoto, T. Ohashi, and M. Sato. Elongation and random orientation of bovine endothelial cells in response to hydrostatic pressure: comparison with response to shear stress. JSME Int. J. 45:1248–1255, 2003.

    Article  Google Scholar 

  21. Sullivan, N., D. L. Snyder, K. Tipton, S. Uhl, and K. M. Schoelles. Negative pressure wound therapy devices (Project ID: WNDT1108). Technology Assessment Report, AHRQ USA. (Available online 26 May 2009).

  22. Ubbink, D. T., S. J. Westerbos, D. Evans, L. Land, and H. Vermeulen. Topical negative pressure for treating chronic wounds. Cochrane Database Syst. Rev. 16:CD001898, 2008.

    Google Scholar 

  23. Ubbink, D. T., S. J. Westerbos, E. A. Nelson, and H. Vermeulen. A systematic review of topical negative pressure therapy for acute and chronic wounds. Br. J. Surg. 95:685–692, 2008.

    Article  Google Scholar 

  24. Velnar, T., T. Bailey, and V. Smrkolj. The wound healing process: an overview of the cellular and molecular mechanisms. J. Int. Med. Res. 37:1528–1542, 2009.

    Article  Google Scholar 

  25. Zhao, S., A. Suciu, T. Ziegler, J. E. Moore, Jr., E. Bürki, J. J. Meister, and H. R. Brunner. Synergistic effects of fluid shear stress and cyclic circumferential stretch on vascular endothelial cell morphology and cytoskeleton. Arterioscler. Thromb. Vasc. Biol. 15:1781–1786, 1995.

    Article  Google Scholar 

Download references

Conflict of interest

D.Y., K.S., and M.S. declare that they have no conflict of interest.

Ethical Standards

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Yoshino.

Additional information

Associate Editor Mian Long oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshino, D., Sato, K. & Sato, M. Endothelial Cell Response Under Hydrostatic Pressure Condition Mimicking Pressure Therapy. Cel. Mol. Bioeng. 8, 296–303 (2015). https://doi.org/10.1007/s12195-015-0385-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-015-0385-8

Keywords

Navigation