Skip to main content

Advertisement

Log in

Adipose Stromal Cells are a More Efficient Source than Adipose Stem Cells in Retrovirus-Mediated iPS Induction

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Recently, adipose tissue-derived mesenchymal stem cells (MSCs) were reported to be a valuable cell source for generating induced pluripotent stem (iPS) cells because adipose tissue is readily obtainable and possesses high quantities of MSCs. To date, little research has been conducted to characterize the efficiency of iPS induction in adipose tissue. Human iPS cells were generated from adipose tissue-derived MSCs (AT-MSCs) and stromal cells (AT-SCs) via a retroviral delivery system. The reprogramming efficiency of AT-MSCs and AT-SCs were 0.008 and 0.014%, respectively, in terms of the expression of the TRA-1-60 antibody and 0.023 and 0.041%, respectively, regarding alkaline phosphatase staining. This differential reprogramming capability resulted from different levels of viral infectivity between the two cell types. Viral infectivity using pMXs-IRES-GFP was notably low in AT-MSCs and the quantities of OSKM (OCT4, SOX2, KLF4 and c-MYC) in AT-MSCs were 22.5–31.6% of AT-SCs. In conclusion, the amount of transgenes leads to a higher reprogramming efficiency in AT-SCs compared with AT-MSCs. The present study shows that the induction efficiency of pluripotent cells from somatic or adult stem cells could depend on the viral susceptibility of the target cells. Therefore, non-MSCs could be a more efficient source for reprogramming by retrovirus-mediated iPS induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Aasen, T., A. Raya, M. J. Barrero, E. Garreta, A. Consiglio, F. Gonzalez, R. Vassena, J. Bilic, V. Pekarik, G. Tiscornia, M. Edel, S. Boue, and J. C. Izpisua Belmonte. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol. 26:1276–1284, 2008.

    Article  Google Scholar 

  2. Aksu, A. E., J. P. Rubin, J. R. Dudas, and K. G. Marra. Role of gender and anatomical region on induction of osteogenic differentiation of human adipose-derived stem cells. Ann. Plast. Surg. 60:306–322, 2008.

    Article  Google Scholar 

  3. Aoi, T., K. Yae, M. Nakagawa, T. Ichisaka, K. Okita, K. Takahashi, T. Chiba, and S. Yamanaka. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321:699–702, 2008.

    Article  Google Scholar 

  4. Aoki, T., H. Ohnishi, Y. Oda, M. Tadokoro, M. Sasao, H. Kato, K. Hattori, and H. Ohgushi. Generation of induced pluripotent stem cells from human adipose-derived stem cells without c-MYC. Tissue Eng. Part A 16:2197–2206, 2010.

    Article  Google Scholar 

  5. Boquest, A. C., A. Shahdadfar, J. E. Brinchmann, and P. Collas. Isolation of stromal stem cells from human adipose tissue. Methods Mol. Biol. 325:35–46, 2006.

    Google Scholar 

  6. Carey, B. W., S. Markoulaki, J. Hanna, K. Saha, Q. Gao, M. Mitalipova, and R. Jaenisch. Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc. Natl. Acad. Sci. USA 106:157–162, 2009.

    Article  Google Scholar 

  7. Folgiero, V., E. Migliano, M. Tedesco, S. Iacovelli, G. Bon, M. L. Torre, A. Sacchi, M. Marazzi, S. Bucher, and R. Falcioni. Purification and characterization of adipose-derived stem cells from patients with lipoaspirate transplant. Cell Transpl. 19:1225–1235, 2010.

    Article  Google Scholar 

  8. Kang, S. J., S. H. Jeong, E. J. Kim, J. H. Cho, Y. I. Park, S. W. Park, H. S. Shin, S. W. Son, and H. G. Kang. Evaluation of hepatotoxicity of chemicals using hepatic progenitor and hepatocyte-like cells derived from mouse embryonic stem cells : Effect of chemicals on ESC-derived hepatocyte differentiation. Cell Biol. Toxicol. 29:1–11, 2013.

    Article  Google Scholar 

  9. Katz, A. J., A. Tholpady, S. S. Tholpady, H. Shang, and R. C. Ogle. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells 23:412–423, 2005.

    Article  Google Scholar 

  10. Kim, J. B., V. Sebastiano, G. Wu, M. J. Arauzo-Bravo, P. Sasse, L. Gentile, K. Ko, D. Ruau, M. Ehrich, D. van den Boom, J. Meyer, K. Hubner, C. Bernemann, C. Ortmeier, M. Zenke, B. K. Fleischmann, H. Zaehres, and H. R. Scholer. Oct4-induced pluripotency in adult neural stem cells. Cell 136:411–419, 2009.

    Article  Google Scholar 

  11. Kim, J. B., H. Zaehres, G. Wu, L. Gentile, K. Ko, V. Sebastiano, M. J. Arauzo-Bravo, D. Ruau, D. W. Han, M. Zenke, and H. R. Scholer. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454:646–650, 2008.

    Article  Google Scholar 

  12. Maherali, N., T. Ahfeldt, A. Rigamonti, J. Utikal, C. Cowan, and K. Hochedlinger. A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell 3:340–345, 2008.

    Article  Google Scholar 

  13. Mitchell, J. B., K. McIntosh, S. Zvonic, S. Garrett, Z. E. Floyd, A. Kloster, Y. Di Halvorsen, R. W. Storms, B. Goh, G. Kilroy, X. Wu, and J. M. Gimble. Immunophenotype of human adipose-derived cells: Temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 24:376–385, 2006.

    Article  Google Scholar 

  14. Miura, K., Y. Okada, T. Aoi, A. Okada, K. Takahashi, K. Okita, M. Nakagawa, M. Koyanagi, K. Tanabe, M. Ohnuki, D. Ogawa, E. Ikeda, H. Okano, and S. Yamanaka. Variation in the safety of induced pluripotent stem cell lines. Nat. Biotechnol. 27:743–745, 2009.

    Article  Google Scholar 

  15. Mizuno, H. Adipose-derived stem and stromal cells for cell-based therapy: Current status of preclinical studies and clinical trials. Curr. Opin. Mol. Ther. 12:442–449, 2010.

    Google Scholar 

  16. Niibe, K., Y. Kawamura, D. Araki, S. Morikawa, K. Miura, S. Suzuki, S. Shimmura, T. Sunabori, Y. Mabuchi, Y. Nagai, T. Nakagawa, H. Okano, and Y. Matsuzaki. Purified mesenchymal stem cells are an efficient source for iPS cell induction. PLoS One 6:e17610, 2011.

    Article  Google Scholar 

  17. Okita, K., T. Ichisaka, and S. Yamanaka. Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317, 2007.

    Article  Google Scholar 

  18. Okita, K., M. Nakagawa, H. Hyenjong, T. Ichisaka, and S. Yamanaka. Generation of mouse induced pluripotent stem cells without viral vectors. Science 322:949–953, 2008.

    Article  Google Scholar 

  19. Ouchi, N., J. L. Parker, J. J. Lugus, and K. Walsh. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 11:85–97, 2011.

    Article  Google Scholar 

  20. Prunet-Marcassus, B., B. Cousin, D. Caton, M. Andre, L. Penicaud, and L. Casteilla. From heterogeneity to plasticity in adipose tissues: Site-specific differences. Exp. Cell Res. 312:727–736, 2006.

    Article  Google Scholar 

  21. Soldner, F., D. Hockemeyer, C. Beard, Q. Gao, G. W. Bell, E. G. Cook, G. Hargus, A. Blak, O. Cooper, M. Mitalipova, O. Isacson, and R. Jaenisch. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136:964–977, 2009.

    Article  Google Scholar 

  22. Stadtfeld, M., M. Nagaya, J. Utikal, G. Weir, and K. Hochedlinger. Induced pluripotent stem cells generated without viral integration. Science 322:945–949, 2008.

    Article  Google Scholar 

  23. Sugii, S., Y. Kida, T. Kawamura, J. Suzuki, R. Vassena, Y. Q. Yin, M. K. Lutz, W. T. Berggren, J. C. Izpisua Belmonte, and R. M. Evans. Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells. Proc. Natl. Acad. Sci. USA 107:3558–3563, 2010.

    Article  Google Scholar 

  24. Sun, N., N. J. Panetta, D. M. Gupta, K. D. Wilson, A. Lee, F. Jia, S. Hu, A. M. Cherry, R. C. Robbins, M. T. Longaker, and J. C. Wu. Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc. Natl. Acad. Sci. USA 106:15720–15725, 2009.

    Article  Google Scholar 

  25. Takahashi, K., K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872, 2007.

    Article  Google Scholar 

  26. Takahashi, K., and S. Yamanaka. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(663–676):26, 2006.

    Google Scholar 

  27. Wagner, W., F. Wein, A. Seckinger, M. Frankhauser, U. Wirkner, U. Krause, J. Blake, C. Schwager, V. Eckstein, W. Ansorge, and A. D. Ho. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp. Hematol. 33:1402–1416, 2005.

    Article  Google Scholar 

  28. Wernig, M., C. J. Lengner, J. Hanna, M. A. Lodato, E. Steine, R. Foreman, J. Staerk, S. Markoulaki, and R. Jaenisch. A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nat. Biotechnol. 26:916–924, 2008.

    Article  Google Scholar 

  29. Woltjen, K., I. P. Michael, P. Mohseni, R. Desai, M. Mileikovsky, R. Hamalainen, R. Cowling, W. Wang, P. Liu, M. Gertsenstein, K. Kaji, H. K. Sung, and A. Nagy. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–770, 2009.

    Article  Google Scholar 

  30. Hanna, J., S. Markoulaki, P. Schorderet, B. W. Carey, C. Beard, M. Wernig, M. P. Creyghton, E. J. Steine, J. P. Cassady, R. Foreman, C. J. Lengner, J. A. Dausman, and R. Jaenisch. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133:250–264, 2008.

  31. Yu, J., M. A. Vodyanik, K. Smuga-Otto, J. Antosiewicz-Bourget, J. L. Frane, S. Tian, J. Nie, G. A. Jonsdottir, V. Ruotti, R. Stewart Slukvin, II, and J. A. Thomson. Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920, 2007.

    Article  Google Scholar 

  32. Zuk, P. A. The adipose-derived stem cell: looking back and looking ahead. Mol. Biol Cell 21:1783–1787, 2010.

    Article  Google Scholar 

Download references

Acknowledgment

This project was supported by research funds from the Animal, Plant and Fisheries Quarantine and Inspection Agency (QIA), Republic of Korea.

Conflicts of interest

Seok-Jin Kang, Young-Il Park, Mi-Jeong Kwon, Yool-Hee Yang, Sa-Ik Bang, Sea-Hwan Sohn, Yong Ho Park, ByungJae So and Hwan-Goo Kang declare that they have no conflicts of interest.

Ethical standards

All human subjects were carried out in accordance with the guidelines of Samsung Medical Center and approved by the hospital’s Institutional Review Board. Also, all animal studies were carried out in accordance with the Code of Laboratory Animal Welfare Ethics, Animal, Plant and Fisheries Quarantine & Inspection Agency (QIA), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwan-Goo Kang.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1536 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, SJ., Park, YI., Kwon, MJ. et al. Adipose Stromal Cells are a More Efficient Source than Adipose Stem Cells in Retrovirus-Mediated iPS Induction. Cel. Mol. Bioeng. 8, 224–235 (2015). https://doi.org/10.1007/s12195-014-0374-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-014-0374-3

Keywords

Navigation