Skip to main content
Log in

Nuclear Stiffening Inhibits Migration of Invasive Melanoma Cells

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

During metastasis, melanoma cells must be sufficiently deformable to squeeze through extracellular barriers with small pore sizes. We visualize and quantify deformability of single cells using micropipette aspiration and examine the migration potential of a population of melanoma cells using a flow migration apparatus. We artificially stiffen the nucleus with recombinant overexpression of Δ50 lamin A, which is found in patients with Hutchison Gilford progeria syndrome and in aged individuals. Melanoma cells, both WM35 and Lu1205, both show reduced nuclear deformability and reduced cell invasion with the expression of Δ50 lamin A. These studies suggest that cellular aging including expression of Δ50 lamin A and nuclear stiffening may reduce the potential for metastatic cancer migration. Thus, the pathway of cancer metastasis may be kept in check by mechanical factors in addition to known chemical pathway regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Bista, R. K., S. Uttam, D. J. Hartman, W. Qiu, J. Yu, et al. Investigation of nuclear nano-morphology marker as a biomarker for cancer risk assessment using a mouse model. J. Biomed. Opt. 17:066014, 2012.

    Article  Google Scholar 

  2. Booth-Gauthier, E. A., V. Du, M. Ghibaudo, A. D. Rape, K. N. Dahl, and B. Ladoux. Hutchinson-Gilford progeria syndrome alters nuclear shape and reduces cell motility in three dimensional model substrates. Integr. Biol. (Camb) 5:569–577, 2013.

    Article  Google Scholar 

  3. Butin-Israeli, V., S. A. Adam, A. E. Goldman, and R. D. Goldman. Nuclear lamin functions and disease. Trends Genet. 28:464–471, 2012.

    Article  Google Scholar 

  4. Chakraborty, A. K., N. Kolesnikova, J. D. F. Sousa, E. M. Espreafico, K. C. Peronni, and J. Pawelek. Expression of c-Met proto-oncogene in metastatic macrophage x melanoma fusion hybrids: implication of its possible role in MSH-induced motility. Oncol. Res. 14:163–174, 2003.

    Google Scholar 

  5. Crowson, A. N., C. M. Magro, and M. C. Mihm. Prognosticators of melanoma, the melanoma report, and the sentinel lymph node. Mod. Pathol. 19(Suppl 2):S71–S87, 2006.

    Article  Google Scholar 

  6. Dahl, K. N., P. Scaffidi, M. F. Islam, A. G. Yodh, K. L. Wilson, and T. Misteli. Distinct structural and mechanical properties of the nuclear lamina in Hutchinson–Gilford progeria syndrome. Proc. Natl. Acad. Sci. USA 103:10271–10276, 2006.

    Article  Google Scholar 

  7. Denais, C., and J. Lammerding. Nuclear mechanics in cancer. Adv. Exp. Med. Biol. 773:435–470, 2014.

    Article  Google Scholar 

  8. Dong, C., R. Skalak, K. L. Sung, G. W. Schmid-Schonbein, and S. Chien. Passive deformation analysis of human leukocytes. J. Biomech. Eng. 110:27–36, 1988.

    Article  Google Scholar 

  9. Dong, C., M. Slattery, and S. Liang. Micromechanics of tumor cell adhesion and migration under dynamic flow conditions. Front Biosci. 10:379–384, 2005.

    Article  Google Scholar 

  10. Fong, L. G., J. K. Ng, J. Lammerding, T. A. Vickers, M. Meta, et al. Prelamin A and lamin A appear to be dispensable in the nuclear lamina. J. Clin. Invest. 116:743–752, 2006.

    Article  Google Scholar 

  11. Friedl, P., K. Wolf, and J. Lammerding. Nuclear mechanics during cell migration. Curr. Opin. Cell Biol. 23:55–64, 2011.

    Article  Google Scholar 

  12. Gal, N., and D. Weihs. Intracellular mechanics and activity of breast cancer cells correlate with metastatic potential. Cell Biochem. Biophys. 63:199–209, 2012.

    Article  Google Scholar 

  13. Goldman, R. D., D. K. Shumaker, M. R. Erdos, M. Eriksson, A. E. Goldman, et al. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc. Natl. Acad. Sci. USA 101:8963–8968, 2004.

    Article  Google Scholar 

  14. Hamstra, D. A., K. Bae, M. V. Pilepich, G. E. Hanks, D. J. Grignon, et al. Older age predicts decreased metastasis and prostate cancer-specific death for men treated with radiation therapy: meta-analysis of radiation therapy oncology group trials. Int. J. Radiat. Oncol. Biol. Phys. 81:1293–1301, 2011.

    Article  Google Scholar 

  15. Harada, T., J. Swift, J. Irianto, J. W. Shin, K. R. Spinler, et al. Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. J. Cell Biol. 204:669–682, 2014.

    Article  Google Scholar 

  16. Hodgson, L., A. J. Henderson, and C. Dong. Melanoma cell migration to type IV collagen requires activation of NF-kappaB. Oncogene 22:98–108, 2003.

    Article  Google Scholar 

  17. Hoffman, B. D., and J. C. Crocker. Cell mechanics: dissecting the physical responses of cells to force. Annu. Rev. Biomed. Eng. 11:259–288, 2009.

    Article  Google Scholar 

  18. Hou, H. W., Q. S. Li, G. Y. Lee, A. P. Kumar, C. N. Ong, and C. T. Lim. Deformability study of breast cancer cells using microfluidics. Biomed. Microdev. 11:557–564, 2009.

    Article  Google Scholar 

  19. Huh, S. J., S. Liang, A. Sharma, C. Dong, and G. P. Robertson. Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Res. 70:6071–6082, 2010.

    Article  Google Scholar 

  20. Hutchison, C. J., M. Alvarez-Reyes, and O. A. Vaughan. Lamins in disease: why do ubiquitously expressed nuclear envelope proteins give rise to tissue-specific disease phenotypes? J. Cell Sci. 114:9–19, 2001.

    Google Scholar 

  21. Kalinowski, A., Z. Qin, K. Coffey, R. Kodali, M. J. Buehler, et al. Calcium causes a conformational change in lamin A tail domain that promotes farnesyl-mediated membrane association. Biophys. J. 104:2246–2253, 2013.

    Article  Google Scholar 

  22. Karasic, T. B., T. K. Hei, and V. N. Ivanov. Disruption of IGF-1R signaling increases TRAIL-induced apoptosis: a new potential therapy for the treatment of melanoma. Exp. Cell Res. 316:1994–2007, 2010.

    Article  Google Scholar 

  23. Khanna, P., C. Y. Chung, R. I. Neves, G. P. Robertson, and C. Dong. CD82/KAI expression prevents IL-8-mediated endothelial gap formation in late-stage melanomas. Oncogene 33:2898–2908, 2014.

    Article  Google Scholar 

  24. Kubben, N., J. W. Voncken, J. Demmers, C. Calis, G. van Almen, et al. Identification of differential protein interactors of lamin A and progerin. Nucleus 1:513–525, 2010.

    Article  Google Scholar 

  25. Kumar, S., and V. M. Weaver. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 28:113–127, 2009.

    Article  Google Scholar 

  26. Leyton-Mange, J., S. Yang, M. H. Hoskins, R. F. Kunz, J. D. Zahn, and C. Dong. Design of a side-view particle imaging velocimetry flow system for cell-substrate adhesion studies. J. Biomech. Eng. 128:271–278, 2006.

    Article  Google Scholar 

  27. Liang, S., A. Sharma, H. H. Peng, G. Robertson, and C. Dong. Targeting mutant (V600E) B-Raf in melanoma interrupts immunoediting of leukocyte functions and melanoma extravasation. Cancer Res. 67:5814–5820, 2007.

    Article  Google Scholar 

  28. Liang, S., M. J. Slattery, D. Wagner, S. I. Simon, and C. Dong. Hydrodynamic shear rate regulates melanoma-leukocyte aggregation, melanoma adhesion to the endothelium, and subsequent extravasation. Ann. Biomed. Eng. 36:661–671, 2008.

    Article  Google Scholar 

  29. Liotta, L. A. Cancer cell invasion and metastasis. Sci. Am. 266(54–9):62–63, 1992.

    Google Scholar 

  30. Maloney, J. M., D. Nikova, F. Lautenschlager, E. Clarke, R. Langer, et al. Mesenchymal stem cell mechanics from the attached to the suspended state. Biophys. J. 99:2479–2487, 2010.

    Article  Google Scholar 

  31. McCaffrey, L. M., and I. G. Macara. Epithelial organization, cell polarity and tumorigenesis. Trends Cell Biol. 21:727–735, 2011.

    Article  Google Scholar 

  32. Pathak, A., and S. Kumar. Independent regulation of tumor cell migration by matrix stiffness and confinement. Proc. Natl. Acad. Sci. USA 109:10334–10339, 2012.

    Article  Google Scholar 

  33. Peng, H. H., S. Liang, A. J. Henderson, and C. Dong. Regulation of interleukin-8 expression in melanoma-stimulated neutrophil inflammatory response. Exp. Cell Res. 313:551–559, 2007.

    Article  Google Scholar 

  34. Philip, J. T., and K. N. Dahl. Nuclear mechanotransduction: response of the lamina to extracellular stress with implications in aging. J. Biomech. 41:3164–3170, 2008.

    Article  Google Scholar 

  35. Polacheck, W. J., I. K. Zervantonakis, and R. D. Kamm. Tumor cell migration in complex microenvironments. Cell Mol. Life Sci. 70:1335–1356, 2013.

    Article  Google Scholar 

  36. Qin, Z., A. Kalinowski, K. N. Dahl, and M. J. Buehler. Structure and stability of the lamin A tail domain and HGPS mutant. J. Struct. Biol. 175:425–433, 2011.

    Article  Google Scholar 

  37. Reynolds, N. H., W. Ronan, E. P. Dowling, P. Owens, R. M. McMeeking, and J. P. McGarry. On the role of the actin cytoskeleton and nucleus in the biomechanical response of spread cells. Biomaterials 35:4015–4025, 2014.

    Article  Google Scholar 

  38. Ribeiro, A. S., and K. N. Dahl. The nucleus as a central structure in defining the mechanical properties of stem cells. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010:831–834, 2010.

    Google Scholar 

  39. Ribeiro, A. J., S. Tottey, R. W. Taylor, R. Bise, T. Kanade, et al. Mechanical characterization of adult stem cells from bone marrow and perivascular niches. J. Biomech. 45:1280–1287, 2012.

    Article  Google Scholar 

  40. Scaffidi, P., L. Gordon, and T. Misteli. The cell nucleus and aging: tantalizing clues and hopeful promises. PLoS Biol. 3:e395, 2005.

    Article  Google Scholar 

  41. Scaffidi, P., and T. Misteli. Lamin A-dependent nuclear defects in human aging. Science 312:1059–1063, 2006.

    Article  Google Scholar 

  42. Sharma, A., M. A. Tran, S. Liang, A. K. Sharma, S. Amin, et al. Targeting mitogen-activated protein kinase/extracellular signal-regulated kinase kinase in the mutant (V600E) B-Raf signaling cascade effectively inhibits melanoma lung metastases. Cancer Res. 66:8200–8209, 2006.

    Article  Google Scholar 

  43. Slattery, M. J., S. Liang, and C. Dong. Distinct role of hydrodynamic shear in leukocyte-facilitated tumor cell extravasation. Am. J. Physiol. Cell Physiol. 288:C831–C839, 2005.

    Article  Google Scholar 

  44. Sperka, T., J. Wang, and K. L. Rudolph. DNA damage checkpoints in stem cells, ageing and cancer. Nat. Rev. Mol. Cell Biol. 13:579–590, 2012.

    Article  Google Scholar 

  45. Swaminathan, V., K. Mythreye, E. T. O’Brien, A. Berchuck, G. C. Blobe, and R. Superfine. Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res. 71:5075–5080, 2011.

    Article  Google Scholar 

  46. Vasko, V., M. Saji, E. Hardy, M. Kruhlak, A. Larin, et al. Akt activation and localisation correlate with tumour invasion and oncogene expression in thyroid cancer. J. Med. Genet. 41:161–170, 2004.

    Article  Google Scholar 

  47. Voura, E. B., R. A. Ramjeesingh, A. M. Montgomery, and C. H. Siu. Involvement of integrin alpha(v)beta(3) and cell adhesion molecule L1 in transendothelial migration of melanoma cells. Mol. Biol. Cell 12:2699–2710, 2001.

    Article  Google Scholar 

  48. Wang, J., M. J. Slattery, M. H. Hoskins, S. Liang, C. Dong, and Q. Du. Monte carlo simulation of heterotypic cell aggregation in nonlinear shear flow. Math. Biosci. Eng. 3:683–696, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  49. Watanabe, T., H. Kuramochi, A. Takahashi, K. Imai, N. Katsuta, et al. Higher cell stiffness indicating lower metastatic potential in B16 melanoma cell variants and in (−)-epigallocatechin gallate-treated cells. J. Cancer Res. Clin. Oncol. 138:859–866, 2012.

    Article  Google Scholar 

  50. Wirtz, D., K. Konstantopoulos, and P. C. Searson. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11:512–522, 2011.

    Article  Google Scholar 

  51. Worman, H. J., C. Ostlund, and Y. Wang. Diseases of the nuclear envelope. Cold Spring Harb. Perspect. Biol. 2:a000760, 2010.

    Article  Google Scholar 

  52. Wu, Z., L. Wu, D. Weng, D. Xu, J. Geng, and F. Zhao. Reduced expression of lamin A/C correlates with poor histological differentiation and prognosis in primary gastric carcinoma. J. Exp. Clin. Cancer Res. 28:8, 2009.

    Article  Google Scholar 

  53. Zhang, P., T. Ozdemir, C. Y. Chung, G. P. Robertson, and C. Dong. Sequential binding of alphaVbeta3 and ICAM-1 determines fibrin-mediated melanoma capture and stable adhesion to CD11b/CD18 on neutrophils. J. Immunol. 186:242–254, 2011.

    Article  Google Scholar 

  54. Zink, D., A. H. Fischer, and J. A. Nickerson. Nuclear structure in cancer cells. Nat. Rev. Cancer 4:677–687, 2004.

    Article  Google Scholar 

Download references

Acknowledgments

We kindly acknowledge funding from the NIH (CA-125707 to CD) and NSF (CBET 0954421 CAREER to KND).

Ethical Standards

No human or animal studies were carried out by the authors for this article.

Conflicts of interest

A.J.S.R., P.K., A.S., C.D. and K.N.D. declare they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kris Noel Dahl.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1645 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, A.J.S., Khanna, P., Sukumar, A. et al. Nuclear Stiffening Inhibits Migration of Invasive Melanoma Cells. Cel. Mol. Bioeng. 7, 544–551 (2014). https://doi.org/10.1007/s12195-014-0358-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-014-0358-3

Keywords

Navigation