Skip to main content
Log in

Generation of Multi-scale Vascular Network System Within 3D Hydrogel Using 3D Bio-printing Technology

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Although 3D bio-printing technology has great potential in creating complex tissues with multiple cell types and matrices, maintaining the viability of thick tissue construct for tissue growth and maturation after the printing is challenging due to lack of vascular perfusion. Perfused capillary network can be a solution for this issue; however, construction of a complete capillary network at single cell level using the existing technology is nearly impossible due to limitations in time and spatial resolution of the dispensing technology. To address the vascularization issue, we developed a 3D printing method to construct larger (lumen size of ~1 mm) fluidic vascular channels and to create adjacent capillary network through a natural maturation process, thus providing a feasible solution to connect the capillary network to the large perfused vascular channels. In our model, microvascular bed was formed in between two large fluidic vessels, and then connected to the vessels by angiogenic sprouting from the large channel edge. Our bio-printing technology has a great potential in engineering vascularized thick tissues and vascular niches, as the vascular channels are simultaneously created while cells and matrices are printed around the channels in desired 3D patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Adams, R. H., and K. Alitalo. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 8:464–478, 2007.

    Article  Google Scholar 

  2. Boland, T., V. Mironov, A. Gutowska, E. A. Roth, and R. R. Markwald. Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anat. Rec. A 272:497–502, 2003.

    Article  Google Scholar 

  3. Borenstein, J. T., E. L. I. J. Weinberg, B. K. Orrick, C. Sundback, M. R. Kaazempur-mofrad, and J. P. Vacanti. Microfabrication of three-dimensional engineered scaffolds. Tissue Eng. 13:1837–1844, 2007.

    Article  Google Scholar 

  4. Carmeliet, P. Blood vessels and nerves: common signals, pathways and diseases. Nature 4:710–720, 2003.

    Google Scholar 

  5. Carmeliet, P. Angiogenesis in health and disease. Nat. Med. 9:653–660, 2003.

    Article  Google Scholar 

  6. Carmeliet, P., and R. K. Jain. Angiogenesis in cancer and other diseases. Nature 407:249–257, 2000.

    Article  Google Scholar 

  7. Carmeliet, P., and R. K. Jain. Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307, 2011.

    Article  Google Scholar 

  8. Chen, X., et al. Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature. Tissue Eng. Part A 15:1363–1371, 2009.

    Article  Google Scholar 

  9. Chiu, D. T., et al. Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. Proc. Natl. Acad. Sci. U.S.A. 97:2408–2413, 2000.

    Article  Google Scholar 

  10. Chrobak, K. M., D. R. Potter, and J. Tien. Formation of perfused, functional microvascular tubes in vitro. Microvasc. Res. 71:185–196, 2006.

    Article  Google Scholar 

  11. Conway, E. M., D. Collen, and P. Carmeliet. Molecular mechanisms of blood vessel growth. Cardiovasc. Res. 49:507–521, 2001.

    Article  Google Scholar 

  12. Cui, X., and T. Boland. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30:6221–6227, 2009.

    Article  Google Scholar 

  13. Davis, G. E., and K. J. Bayless. An integrin and rho GTPase-dependent pinocytic vacuole mechanism controls capillary lumen formation in collagen and fibrin matrices. Microcirculation 10:27–44, 2003.

    Article  Google Scholar 

  14. Davis, G. E., W. Koh, and A. N. Stratman. Mechanisms controlling human endothelial lumen formation and tube assembly in three-dimensional extracellular matrices. Birth Defects Res. C 81:270–285, 2007.

    Article  Google Scholar 

  15. Davis, G. E., and D. R. Senger. Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ. Res. 97:1093–1107, 2005.

    Article  Google Scholar 

  16. Fidkowski, C., M. R. Kaazempur-Mofrad, J. Borenstein, J. P. Vacanti, R. Langer, and Y. Wang. Endothelialized microvasculature based on a biodegradable elastomer. Tissue Eng. 11:302–309, 2005.

    Article  Google Scholar 

  17. Ghajar, C. M., K. S. Blevins, C. C. W. Hughes, S. C. George, and A. J. Putnam. Mesenchymal stem cells enhance angiogenesis early matrix metalloproteinase upregulation. Tissue Eng. 12:2875–2888, 2006.

    Article  Google Scholar 

  18. Grinnell, F. Fibroblast–collagen–matrix contraction: growth-factor signalling and mechanical loading. Trends Cell Biol. 10:362–365, 2000.

    Article  Google Scholar 

  19. Grinnell, F. Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol. 13:264–269, 2003.

    Article  Google Scholar 

  20. Hsu, Y.-H., M. L. Moya, P. Abiri, C. C. W. Hughes, S. C. George, and A. P. Lee. Full range physiological mass transport control in 3D tissue cultures. Lab Chip 13:81–89, 2013.

    Article  Google Scholar 

  21. Iruela-Arispe, M. L., and G. E. Davis. Cellular and molecular mechanisms of vascular lumen formation. Dev. Cell 16:222–231, 2009.

    Article  Google Scholar 

  22. Kachgal, S., and A. J. Putnam. Mesenchymal stem cells from adipose and bone marrow promote angiogenesis via distinct cytokine and protease expression mechanisms. Angiogenesis 14:47–59, 2011.

    Article  Google Scholar 

  23. Kamei, M., W. B. Saunders, K. J. Bayless, L. Dye, G. E. Davis, and B. M. Weinstein. Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442:453–456, 2006.

    Article  Google Scholar 

  24. Khademhosseini, A., R. Langer, J. Borenstein, and J. P. Vacanti. Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. USA 103:2480–2487, 2006.

    Article  Google Scholar 

  25. Koh, W., A. N. Stratman, A. Sacharidou, and G. E. Davis. In vitro three dimensional collagen matrix models of endothelial lumen formation during vasculogenesis and angiogenesis. Methods Enzymol. 443:83–101, 2008.

    Article  Google Scholar 

  26. Langer, R. S., and J. P. Vacanti. Tissue engineering: the challenges ahead. Sci. Am. 280:86–89, 1999.

    Article  Google Scholar 

  27. Lee, V., and G. Dai. Micro and nanotechnology in vascular regeneration. In: Tissue and Organ Regeneration—Advances in Micro- and Nanotechnology, edited by G. L. Zhang, T. Webster, and A. Khademhosseini. Singapore: Pan Stanford Publishing, 2014.

  28. Lee, W., et al. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30:1587–1595, 2009.

    Article  Google Scholar 

  29. Lee, W., et al. On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels. Biotechnol. Bioeng. 105:1178–1186, 2010.

    Google Scholar 

  30. Lee, V. K., et al. Design and fabrication of human skin by 3D bioprinting. Tissue Eng. Part C 20:473–484, 2014.

  31. Leong, M. F., et al. Patterned prevascularised tissue constructs by assembly of polyelectrolyte hydrogel fibres. Nat. Commun. 4:2353, 2013.

    Article  Google Scholar 

  32. Li, Y.-S. J., J. H. Haga, and S. Chien. Molecular basis of the effects of shear stress on vascular endothelial cells. J. Biomech. 38:1949–1971, 2005.

    Article  Google Scholar 

  33. Liu Tsang, V., et al. Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J. 21:790–801, 2007.

    Article  Google Scholar 

  34. Miller, J. S., et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11:768–774, 2012.

    Google Scholar 

  35. Mironov, V., R. P. Visconti, V. Kasyanov, G. Forgacs, C. J. Drake, and R. R. Markwald. Organ printing: tissue spheroids as building blocks. Biomaterials 30:2164–2174, 2009.

    Article  Google Scholar 

  36. Moya, M. L., Y. Hsu, A. P. Lee, C. C. W. Hughes, and S. C. George. In vitro perfused human capillary networks. Tissue Eng. Part C 19:730–737, 2013.

    Article  Google Scholar 

  37. Nahmias, Y., R. E. Schwartz, C. M. Verfaillie, and D. J. Odde. Laser-guided direct writing for three-dimensional tissue engineering. Biotechnol. Bioeng. 92:129–136, 2005.

    Article  Google Scholar 

  38. Nakatsu, M. N., and C. C. W. Hughes. An optimized three-dimensional in vitro model for the analysis of angiogenesis. Methods Enzymol. 443:65–82, 2008.

    Article  Google Scholar 

  39. Nakatsu, M. N., et al. Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and Angiopoietin-1. Microvasc. Res. 66:102–112, 2003.

    Article  Google Scholar 

  40. Nguyen, D.-H. T., et al. Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proc. Natl. Acad. Sci. USA 110:6712–6717, 2013.

    Article  Google Scholar 

  41. Ozturk, M. S., V. K. Lee, L. Zhao, G. Dai, and X. Intes. Mesoscopic fluorescence molecular tomography of reporter genes in bioprinted thick tissue. J. Biomed. Opt. 18:100501, 2013.

    Article  Google Scholar 

  42. Potente, M., H. Gerhardt, and P. Carmeliet. Basic and therapeutic aspects of angiogenesis. Cell 146:873–887, 2011.

    Article  Google Scholar 

  43. Price, G. M., and J. Tien. Chapter 17: methods for forming human microvascular tubes in vitro and measuring their macromolecular permeability. In: Biological Microarrays: Methods and Protocols, Methods in Molecular Biology, edited by A. Khademhosseini, K.-Y. Suh, and M. Zourob. Totowa, NJ: Humana Press, 2011, pp. 281–293.

    Chapter  Google Scholar 

  44. Raghavan, S., C. M. Nelson, J. D. Baranski, E. Lim, and C. S. Chen. Geometrically controlled endothelial tubulogenesis in micropatterned gels. Tissue Eng. 16:2255–2263, 2010.

    Article  Google Scholar 

  45. Roth, E. A., T. Xu, M. Das, C. Gregory, J. J. Hickman, and T. Boland. Inkjet printing for high-throughput cell patterning. Biomaterials 25:3707–3715, 2004.

    Article  Google Scholar 

  46. Rouwkema, J., N. C. Rivron, and C. A. van Blitterswijk. Vascularization in tissue engineering. Trends Biotechnol. 26:434–441, 2008.

    Article  Google Scholar 

  47. Saunders, W. B., et al. Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. J. Cell Biol. 175:179–191, 2006.

    Article  MathSciNet  Google Scholar 

  48. Sekine, H., et al. In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. Nat. Commun. 4:1399, 2013.

    Article  MathSciNet  Google Scholar 

  49. Shin, Y., et al. In vitro 3D collective sprouting angiogenesis under orchestrated ANG-1 and VEGF gradients. Lab Chip 11:2175–2181, 2011.

    Article  Google Scholar 

  50. Stratman, A. N., K. M. Malotte, R. D. Mahan, M. J. Davis, and G. E. Davis. Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood 114:5091–5101, 2009.

    Article  Google Scholar 

  51. Wong, K. H. K., J. M. Chan, R. D. Kamm, and J. Tien. Microfluidic models of vascular functions. Annu. Rev. Biomed. Eng. 14:205–230, 2012.

    Article  Google Scholar 

  52. Xu, T., J. Jin, C. Gregory, J. J. J. J. Hickman, and T. Boland. Inkjet printing of viable mammalian cells. Biomaterials 26:93–99, 2005.

    Article  Google Scholar 

  53. Yancopoulos, G. D., S. Davis, N. W. Gale, J. S. Rudge, S. J. Wiegand, and J. Holash. Vascular-specific growth factors and blood vessel formation. Nature 14:407, 2000.

    Google Scholar 

  54. Zhao, L., V. K. Lee, S–. S. Yoo, G. Dai, and X. Intes. The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds. Biomaterials 33:5325–5332, 2012.

    Article  Google Scholar 

  55. Zheng, Y., et al. In vitro microvessels for the study of angiogenesis and thrombosis. Proc. Natl. Acad. Sci. USA 109:9342–9347, 2012.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NIHR01HL118245, NSF CBET-1263455, CBET-1350240 and New York Capital Region Research Alliance grant.

Conflict of interest

Vivian K. Lee, Alison M. Lanzi, Haygan, Ngo, Seung-SchikYoo, Peter A. Vincent, Guohao Dai declare that they have no conflicts of interest.

Ethical Standards

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohao Dai.

Additional information

Associate Editor Anubhav Tripathi oversaw the review of this article.

This article has been designated as a 2013 BMES Outstanding Contribution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, V.K., Lanzi, A.M., Ngo, H. et al. Generation of Multi-scale Vascular Network System Within 3D Hydrogel Using 3D Bio-printing Technology. Cel. Mol. Bioeng. 7, 460–472 (2014). https://doi.org/10.1007/s12195-014-0340-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-014-0340-0

Keywords

Navigation