Skip to main content

Advertisement

Log in

Hydraulic Pressure During Fluid Flow Regulates Purinergic Signaling and Cytoskeleton Organization of Osteoblasts

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

During physiological activities, osteoblasts experience a variety of mechanical forces that stimulate anabolic responses at the cellular level necessary for the formation of new bone. Previous studies have primarily investigated the osteoblastic response to individual forms of mechanical stimuli. However in this study, we evaluated the response of osteoblasts to two simultaneous, but independently controlled stimuli; fluid flow-induced shear stress (FSS) and static or cyclic hydrostatic pressure (SHP or CHP, respectively). MC3T3-E1 osteoblasts-like cells were subjected to 12 dynes/cm2 FSS along with SHP or CHP of varying magnitudes to determine if pressure enhances the anabolic response of osteoblasts during FSS. For both SHP and CHP, the magnitude of hydraulic pressure that induced the greatest release of ATP during FSS was 15 mmHg. Increasing the hydraulic pressure to 50 mmHg or 100 mmHg during FSS attenuated the ATP release compared to 15 mmHg during FSS. Decreasing the magnitude of pressure during FSS to atmospheric pressure reduced ATP release to that of basal ATP release from static cells and inhibited actin reorganization into stress fibers that normally occurred during FSS with 15 mmHg of pressure. In contrast, translocation of nuclear factor kappa B (NFκB) to the nucleus was independent of the magnitude of hydraulic pressure and was found to be mediated through the activation of phospholipase-C (PLC), but not src kinase. In conclusion, hydraulic pressure during FSS was found to regulate purinergic signaling and actin cytoskeleton reorganization in the osteoblasts in a biphasic manner, while FSS alone appeared to stimulate NFκB translocation. Understanding the effects of hydraulic pressure on the anabolic responses of osteoblasts during FSS may provide much needed insights into the physiologic effects of coupled mechanical stimuli on osteogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bakker, A. D., K. Soejima, J. Klein-Nulend, and E. H. Burger. The production of nitric oxide and prostaglandin E-2 by primary bone cells is shear stress dependent. J. Biomech. 34:671–677, 2001.

    Article  Google Scholar 

  2. Baldwin, Jr., A. S. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu. Rev. Immunol. 14:649–683, 1996.

    Article  Google Scholar 

  3. Brown, E. J. Integrin-associated proteins. Curr. Opin. Cell Biol. 14:603–607, 2002.

    Article  Google Scholar 

  4. Case, N., B. Sen, J. A. Thomas, M. Styner, Z. Xie, C. R. Jacobs, and J. Rubin. Steady and oscillatory fluid flows produce a similar osteogenic phenotype. Calcif. Tissue Int. 88:189–197, 2011.

    Article  Google Scholar 

  5. Chang, J., Z. Wang, E. Tang, Z. Fan, L. McCauley, R. Franceschi, K. Guan, P. H. Krebsbach, and C. Y. Wang. Inhibition of osteoblastic bone formation by nuclear factor-kappaB. Nat. Med. 15:682–689, 2009.

    Article  Google Scholar 

  6. Charras, G. T., and M. A. Horton. Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys. J. 82:2970–2981, 2002.

    Article  Google Scholar 

  7. Chen, N. X., D. J. Geist, D. C. Genetos, F. M. Pavalko, and R. L. Duncan. Fluid shear-induced NFkappaB translocation in osteoblasts is mediated by intracellular calcium release. Bone 33:399–410, 2003.

    Article  Google Scholar 

  8. Chen, N. X., K. D. Ryder, F. M. Pavalko, C. H. Turner, D. B. Burr, J. Qiu, and R. L. Duncan. Ca(2+) regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts. Am. J. Physiol. Cell Physiol. 278:C989–C997, 2000.

    Google Scholar 

  9. Cowin, S. C., G. Gailani, and M. Benalla. Hierarchical poroelasticity: movement of interstitial fluid between porosity levels in bones. Philos. Trans. A 367:3401–3444, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  10. Cox, B. D., M. Natarajan, M. R. Stettner, and C. L. Gladson. New concepts regarding focal adhesion kinase promotion of cell migration and proliferation. J. Cell. Biochem. 99:35–52, 2006.

    Article  Google Scholar 

  11. Desai, L. P., Y. Wu, R. S. Tepper, and S. J. Gunst. Mechanical stimuli and IL-13 interact at integrin adhesion complexes to regulate expression of smooth muscle myosin heavy chain in airway smooth muscle tissue. Am. J. Physiol. Lung Cell. Mol. Physiol. 301:L275–L284, 2011.

    Article  Google Scholar 

  12. Donahue, T. L., T. R. Haut, C. E. Yellowley, H. J. Donahue, and C. R. Jacobs. Mechanosensitivity of bone cells to oscillating fluid flow induced shear stress may be modulated by chemotransport. J. Biomech. 36:1363–1371, 2003.

    Article  Google Scholar 

  13. Duncan, R. L., K. A. Akanbi, and M. C. Farach-Carson. Calcium signals and calcium channels in osteoblastic cells. Semin. Nephrol. 18:178–190, 1998.

    Google Scholar 

  14. Duncan, R. L., and C. H. Turner. Mechanotransduction and the functional response of bone to mechanical strain. Calcif. Tissue Int. 57:344–358, 1995.

    Article  Google Scholar 

  15. Erb, L., J. Liu, J. Ockerhausen, Q. M. Kong, R. C. Garrad, K. Griffin, C. Neal, B. Krugh, L. I. Santiago-Perez, F. A. Gonzalez, H. D. Gresham, J. T. Turner, and G. A. Weisman. An RGD sequence in the P2Y(2) receptor interacts with alpha(v)beta(3) integrins and is required for G(0)-mediated signal transduction. J. Cell Biol. 153:491–501, 2001.

    Article  Google Scholar 

  16. Evans, E. A., and D. A. Calderwood. Forces and bond dynamics in cell adhesion. Science 316:1148–1153, 2007.

    Article  Google Scholar 

  17. Fan, R. S., R. O. Jacamo, X. H. Jiang, J. Sinnett-Smith, and E. Rozengurt. G protein-coupled receptor activation rapidly stimulates focal adhesion kinase phosphorylation at ser-843-mediation by Ca2+, calmodulin, and Ca2+ calmodulin-dependent kinase II. J. Biol. Chem. 280:24212–24220, 2005.

    Article  Google Scholar 

  18. Forwood, M. R. Inducible cyclo-oxygenase (COX-2) mediates the induction of bone formation by mechanical loading in vivo. J. Bone Miner. Res. 11:1688–1693, 1996.

    Article  Google Scholar 

  19. Frangos, J. A., L. V. Mcintire, and S. G. Eskin. Shear-stress induced stimulation of mammalian-cell metabolism. Biotechnol. Bioeng. 32:1053–1060, 1988.

    Article  Google Scholar 

  20. Gardinier, J., S. Majumdar, R. Duncan, and L. Wang. Cyclic hydraulic pressure and fluid flow differentially modulate cytoskeleton re-organization in MC3t3 osteoblasts. Cell. Mol. Bioeng. 2:133–143, 2009.

    Article  Google Scholar 

  21. Gardinier, J. D., C. W. Townend, K. P. Jen, Q. Wu, R. L. Duncan, and L. Wang. In situ permeability measurement of the mammalian lacunar-canalicular system. Bone 46:1075–1081, 2010.

    Article  Google Scholar 

  22. Genetos, D. C., D. J. Geist, D. Liu, H. J. Donahue, and R. L. Duncan. Fluid shear-induced ATP secretion mediates prostaglandin release in MC3T3-E1 osteoblasts. J. Bone Miner. Res. 20:41–49, 2005.

    Article  Google Scholar 

  23. Genetos, D. C., N. J. Karin, D. J. Geist, H. J. Donahue, and R. L. Duncan. Purinergic signaling is required for fluid shear stress-induced NF-kappa B translocation in osteoblasts. Exp. Cell Res. 317:737–744, 2011.

    Article  Google Scholar 

  24. Glogauer, M., P. Arora, G. Yao, I. Sokholov, J. Ferrier, C. A. McCulloch. Calcium ions and tyrosine phosphorylation interact coordinately with actin to regulate cytoprotective responses to stretching. J. Cell Sci. 110(Pt 1):11–21, 1997.

    Google Scholar 

  25. Hughes, D. E., D. M. Salter, S. Dedhar, and R. Simpson. Integrin expression in human bone. J. Bone Miner. Res. 8:527–533, 1993.

    Article  Google Scholar 

  26. Ingber, D. E. Tensegrity I. Cell structure and hierarchical systems biology. J. Cell Sci. 116:1157–1173, 2003.

    Article  Google Scholar 

  27. Jaasma, M. J., W. M. Jackson, R. Y. Tang, and T. M. Keaveny. Adaptation of cellular mechanical behavior to mechanical loading for osteoblastic cells. J. Biomech. 40:1938–1945, 2007.

    Article  Google Scholar 

  28. Kainulainen, T., A. Pender, M. D’Addario, Y. Feng, P. Lekic, and C. A. McCulloch. Cell death and mechanoprotection by filamin a in connective tissues after challenge by applied tensile forces. J. Biol. Chem. 277:21998–22009, 2002.

    Article  Google Scholar 

  29. Katz, S., R. Boland, and G. Santillan. Modulation of ERK 1/2 and p38 MAPK signaling pathways by ATP in osteoblasts: involvement of mechanical stress-activated calcium influx, PKC and Src activation. Int. J. Biochem. Cell Biol. 38:2082–2091, 2006.

    Article  Google Scholar 

  30. Klein-Nulend, J., A. van der Plas, C. M. Semeins, N. E. Ajubi, J. A. Frangos, P. J. Nijweide, and E. H. Burger. Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J. 9:441–445, 1995.

    Google Scholar 

  31. Lanyon, L. E., and C. T. Rubin. Static vs dynamic loads as an influence on bone remodelling. J. Biomech. 17:897–905, 1984.

    Article  Google Scholar 

  32. Li, W., J. D. Gardinier, C. Price, and L. Wang. Does blood pressure enhance solute transport in the bone lacunar-canalicular system? Bone 47:353–359, 2010.

    Article  Google Scholar 

  33. Liao, Z., C. I. Seye, G. A. Weisman, and L. Erb. The P2Y2 nucleotide receptor requires interaction with alpha v integrins to access and activate G12. J. Cell Sci. 120:1654–1662, 2007.

    Article  Google Scholar 

  34. Liu, D., D. C. Genetos, Y. Shao, D. J. Geist, J. Li, H. Z. Ke, C. H. Turner, and R. L. Duncan. Activation of extracellular-signal regulated kinase (ERK1/2) by fluid shear is Ca(2+)- and ATP-dependent in MC3T3-E1 osteoblasts. Bone 42:644–652, 2008.

    Article  Google Scholar 

  35. Nakamura, I., L. Lipfert, G. A. Rodan, and T. D. Le. Convergence of alpha(v)beta(3) integrin- and macrophage colony stimulating factor-mediated signals on phospholipase Cgamma in prefusion osteoclasts. J. Cell Biol. 152:361–373, 2001.

    Article  Google Scholar 

  36. Orriss, I. R., G. Burnstock, and T. R. Arnett. Purinergic signalling and bone remodelling. Curr. Opin. Pharmacol. 10:322–330, 2010.

    Article  Google Scholar 

  37. Pavalko, F. M., N. X. Chen, C. H. Turner, D. B. Burr, S. Atkinson, Y. F. Hsieh, J. Qiu, and R. L. Duncan. Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions. Am. J. Physiol. 275:C1591–C1601, 1998.

    Google Scholar 

  38. Ponik, S. M., and F. M. Pavalko. Formation of focal adhesions on fibronectin promotes fluid shear stress induction of COX-2 and PGE2 release in MC3T3-E1 osteoblasts. J. Appl. Physiol. 97:135–142, 2004.

    Article  Google Scholar 

  39. Qin, Y. X., and H. Lam. Intramedullary pressure and matrix strain induced by oscillatory skeletal muscle stimulation and its potential in adaptation. J. Biomech. 42:140–145, 2009.

    Article  Google Scholar 

  40. Roelofsen, J., J. Klein-Nulend, and E. H. Burger. Mechanical stimulation by intermittent hydrostatic compression promotes bone-specific gene expression in vitro. J. Biomech. 28:1493–1503, 1995.

    Article  Google Scholar 

  41. Rubin, J., C. Rubin, and C. R. Jacobs. Molecular pathways mediating mechanical signaling in bone. Gene 367:1–16, 2006.

    Article  Google Scholar 

  42. Sah, V. P., T. M. Seasholtz, S. A. Sagi, and J. H. Brown. The role of rho in g protein-coupled receptor signal transduction. Annu. Rev. Pharmacol. Toxicol. 40:459–489, 2000.

    Article  Google Scholar 

  43. Shao, Y., K. J. Czymmek, P. A. Jones, V. P. Fomin, K. Akanbi, R. L. Duncan, and M. C. Farach-Carson. Dynamic interactions between l-type voltage-sensitive calcium channel Cav1.2 subunits and ahnak in osteoblastic cells. Am. J. Physiol. Cell Physiol. 296:C1067–C1078, 2009.

    Article  Google Scholar 

  44. Stevens, H. Y., D. R. Meays, and J. A. Frangos. Pressure gradients and transport in the murine femur upon hindlimb suspension. Bone 39:565–572, 2006.

    Article  Google Scholar 

  45. Takai, E., K. D. Costa, A. Shaheen, C. T. Hung, and X. E. Guo. Osteoblast elastic modulus measured by atomic force microscopy is substrate dependent. Ann. Biomed. Eng. 33:963–971, 2005.

    Article  Google Scholar 

  46. Wadhwa, S., S. L. Godwin, D. R. Peterson, M. A. Epstein, L. G. Raisz, and C. C. Pilbeam. Fluid flow induction of cyclo-oxygenase 2 gene expression in osteoblasts is dependent on an extracellular signal-regulated kinase signaling pathway. J. Bone Miner. Res. 17:266–274, 2002.

    Article  Google Scholar 

  47. Wang, N., K. Naruse, D. Stamenovic, J. J. Fredberg, S. M. Mijailovich, I. M. Tolic-Norrelykke, T. Polte, R. Mannix, and D. E. Ingber. Mechanical behavior in living cells consistent with the tensegrity model. Proc. Natl Acad. Sci. U.S.A. 98:7765–7770, 2001.

    Article  Google Scholar 

  48. Wu, D., P. Ganatos, D. C. Spray, and S. Weinbaum. On the electrophysiological response of bone cells using a stokesian fluid stimulus probe for delivery of quantifiable localized piconewton level forces. J. Biomech. 44:1702–1708, 2011.

    Article  Google Scholar 

  49. Xue, Z., W. Zhang, L. P. Desai, H. Gao, S. J. Gunst, and R. S. Tepper. Increased mechanical strain imposed on murine lungs during ventilation in vivo depresses airway responsiveness and activation of protein kinase Akt. J. Appl. Physiol. 114:1506–1510, 2013.

    Article  Google Scholar 

  50. You, J., C. E. Yellowley, H. J. Donahue, Y. Zhang, Q. Chen, and C. R. Jacobs. Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow. J. Biomech. Eng. 122:387–393, 2000.

    Article  Google Scholar 

  51. Young, S. R., R. Gerard-O’Riley, M. Harrington, and F. M. Pavalko. Activation of NF-kappaB by fluid shear stress, but not TNF-alpha, requires focal adhesion kinase in osteoblasts. Bone 47:74–82, 2010.

    Article  Google Scholar 

  52. Young, S. R., R. Gerard-O’Riley, J. B. Kim, and F. M. Pavalko. Focal adhesion kinase is important for fluid shear stress-induced mechanotransduction in osteoblasts. J. Bone Miner. Res. 24:411–424, 2009.

    Article  Google Scholar 

  53. Zhang, X., A. Chattopadhyay, Q. S. Ji, J. D. Owen, P. J. Ruest, G. Carpenter, and S. K. Hanks. Focal adhesion kinase promotes phospholipase C-gamma1 activity. Proc. Natl Acad. Sci. U.S.A. 96:9021–9026, 1999.

    Article  Google Scholar 

  54. Zhang, J., K. D. Ryder, J. A. Bethel, R. Ramirez, and R. L. Duncan. PTH-induced actin depolymerization increases mechanosensitive channel activity to enhance mechanically stimulated Ca2+ signaling in osteoblasts. J. Bone Miner. Res. 21:1729–1737, 2006.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by funding from NIH/NIAMS (AR043222, AR051901, AR054385, P30GM103333, and AR064668).

Conflict of interest

The authors Joseph D. Gardinier, Vimal Gangadharan, Liyun Wang, and Randall L. Duncan declare that they have no conflicts of interest.

Ethical Standards

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph D. Gardinier.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardinier, J.D., Gangadharan, V., Wang, L. et al. Hydraulic Pressure During Fluid Flow Regulates Purinergic Signaling and Cytoskeleton Organization of Osteoblasts. Cel. Mol. Bioeng. 7, 266–277 (2014). https://doi.org/10.1007/s12195-014-0329-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-014-0329-8

Keywords

Navigation