Skip to main content

Advertisement

Log in

Effects of Migrating Cell-Induced Matrix Reorganization on 3D Cancer Cell Migration

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

The migration of cells is fundamental to a number of physiological/pathological processes, ranging from embryonic development, tissue regeneration to cancer metastasis. Current research on cell migration is largely based on simplified in vitro models that assume a homogeneous microenvironment and overlook the modification of extracellular matrix (ECM) by the cells. To address this shortcoming, we developed a nested three-dimensional (3D) collagen hydrogel model mimicking the connective tissue confronted by highly malignant breast cancer cells, MDA-MB-231. Strikingly, our findings revealed two distinct cell migration patterns: a rapid and directionally persistent collective migration of the leader cells and a more randomized migration in the regions that have previously been significantly modified by cells. The cell-induced modifications, which typically include clustering and alignment of fibers, effectively segmented the matrix into smaller sub-regions. Our results suggest that in an elastic 3D matrix, the presence of adjacent cells that have modified the matrix may in fact become physical hurdle to a migrating cell. Furthermore, our study emphasizes the need for a micromechanical understanding in the context of cancer invasion that allows for cell-induced modification of ECM and a heterogeneous cell migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bloom, R. J., J. P. George, A. Celedon, S. X. Sun, and D. Wirtz. Mapping local matrix remodeling induced by a migrating tumor cell using three-dimensional multiple-particle tracking. Biophys. J. 95:4077–4088, 2008.

    Article  Google Scholar 

  2. Borau, C., R. D. Kamm, and J. M. Garcia-Aznar. Mechano-sensing and cell migration: a 3D model approach. Phys. Biol. 8:066008, 2011.

    Article  Google Scholar 

  3. Brightman, A. O., B. P. Rajwa, J. E. Sturgis, M. E. McCallister, J. P. Robinson, and S. L. Voytik-Harbin. Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro. Biopolymers 54:222–234, 2000.

    Article  Google Scholar 

  4. Broedersz, C. P., K. E. Kasza, L. M. Jawerth, S. Munster, D. A. Weitz, and F. C. MacKintosh. Measurement of nonlinear rheology of cross-linked biopolymer gels. Soft Matter 6:4120–4127, 2010.

    Article  Google Scholar 

  5. Broedersz, C. P., M. Sheinman, and F. C. MacKintosh. Filament-length-controlled elasticity in 3D fiber networks. Phys. Rev. Lett. 108:078102, 2012.

    Article  Google Scholar 

  6. Castello-Cros, R., D. R. Khan, J. Simons, M. Valianou, and E. Cukierman. Staged stromal extracellular 3D matrices differentially regulate breast cancer cell responses through PI3K and beta1-integrins. BMC Cancer 9:94, 2009.

    Article  Google Scholar 

  7. Condeelis, J., and J. E. Segall. Intravital imaging of cell movement in tumours. Nat. Rev. Cancer 3:921–930, 2003.

    Article  Google Scholar 

  8. Decaestecker, C., O. Debeir, P. Van Ham, and R. Kiss. Can anti-migratory drugs be screened in vitro? A review of 2D and 3D assays for the quantitative analysis of cell migration. Med. Res. Rev. 27:149–176, 2007.

    Article  Google Scholar 

  9. Dickinson, R. B., S. Guido, and R. T. Tranquillo. Biased cell migration of fibroblasts exhibiting contact guidance in oriented collagen gels. Ann. Biomed. Eng. 22:342–356, 1994.

    Article  Google Scholar 

  10. Entschladen, F., T. L. Drell, K. Lang, K. Masur, D. Palm, P. Bastian, B. Niggemann, and K. S. Zaenker. Analysis methods of human cell migration. Exp. Cell Res. 307:418–426, 2005.

    Article  Google Scholar 

  11. Even-Ram, S., and K. M. Yamada. Cell migration in 3D matrix. Curr. Opin. Cell Biol. 17:524–532, 2005.

    Article  Google Scholar 

  12. Friedl, P. Dynamic imaging of cellular interactions with extracellular matrix. Histochem. Cell Biol. 122:183–190, 2004.

    Article  Google Scholar 

  13. Friedl, P., and K. Wolf. Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Res. 68:7247–7249, 2008.

    Article  Google Scholar 

  14. Fukata, Y., M. Amano, and K. Kaibuchi. Rho–Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol. Sci. 22:32–39, 2001.

    Article  Google Scholar 

  15. Gaggioli, C., S. Hooper, C. Hidalgo-Carcedo, R. Grosse, J. F. Marshall, K. Harrington, and E. Sahai. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat. Cell Biol. 9:1392–1400, 2007.

    Article  Google Scholar 

  16. Goetz, J. G., S. Minguet, I. Navarro-Lérida, J. J. Lazcano, R. Samaniego, E. Calvo, M. Tello, T. Osteso-Ibáñez, T. Pellinen, A. Echarri, A. Cerezo, A. J. P. Klein-Szanto, R. Garcia, P. J. Keely, P. Sánchez-Mateos, E. Cukierman, and M. A. Del Pozo. Biomechanical remodeling of the microenvironment by stromal Caveolin-1 favors tumor invasion and metastasis. Cell 146:148–163, 2011.

  17. Grinnell, F., L. B. Rocha, C. Iucu, S. Rhee, and H. Jiang. Nested collagen matrices: a new model to study migration of human fibroblast populations in three dimensions. Exp. Cell Res. 312:86–94, 2006.

    Google Scholar 

  18. Han, J., H. Chang, O. Giricz, G. Y. Lee, F. L. Baehner, J. W. Gray, M. J. Bissell, P. A. Kenny, and B. Parvin. Molecular predictors of 3D morphogenesis by breast cancer cell lines in 3D culture. PLoS Comput. Biol. 6:e1000684, 2010.

    Article  Google Scholar 

  19. Hanahan, D., and R. A. Weinberg. The hallmarks of cancer. Cell 100:57–70, 2000.

    Article  Google Scholar 

  20. Harjanto, D., and M. H. Zaman. Modeling extracellular matrix reorganization in 3D environments. PLoS ONE 8:e52509, 2013.

    Article  Google Scholar 

  21. Jones, P. A., and Y. A. De Clerck. Extracellular matrix destruction by invasive tumor cells. Cancer Metastasis Rev. 1:289–317, 1982.

    Article  Google Scholar 

  22. Junkin, M., and P. K. Wong. Probing cell migration in confined environments by plasma lithography. Biomaterials 32:1848–1855, 2011.

    Article  Google Scholar 

  23. Kenny, P. A., G. Y. Lee, C. A. Myers, R. M. Neve, J. R. Semeiks, P. T. Spellman, K. Lorenz, E. H. Lee, M. H. Barcellos-Hoff, O. W. Petersen, J. W. Gray, and M. J. Bissell. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol. Oncol. 1:84–96, 2007.

    Article  Google Scholar 

  24. Kim, A., N. Lakshman, and W. M. Petroll. Quantitative assessment of local collagen matrix remodeling in 3-D culture: the role of Rho kinase. Exp. Cell Res. 312:3683–3692, 2006.

    Article  Google Scholar 

  25. Koch, T. M., S. Münster, N. Bonakdar, J. P. Butler, and B. Fabry. 3D traction forces in cancer cell invasion. PLoS ONE 7:e33476, 2012.

    Article  Google Scholar 

  26. Kolodney, M. S., and E. L. Elson. Correlation of myosin light chain phosphorylation with isometric contraction of fibroblasts. J. Biol. Chem. 268:23850–23855, 1993.

    Google Scholar 

  27. Kurniawan, N. A., S. Enemark, and R. Rajagopalan. The role of structure in the nonlinear mechanics of cross-linked semiflexible polymer networks. J. Chem. Phys. 136:065101, 2012.

    Article  Google Scholar 

  28. Kurniawan, N. A., L. H. Wong, and R. Rajagopalan. Early stiffening and softening of collagen: interplay of deformation mechanisms in biopolymer networks. Biomacromolecules 13:691–698, 2012.

    Article  Google Scholar 

  29. Lo, C. M., H. B. Wang, M. Dembo, and Y. L. Wang. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79:144–152, 2000.

    Article  Google Scholar 

  30. Menezes, G. C., M. Miron-Mendoza, C. H. Ho, H. Jiang, and F. Grinnell. Oncogenic Ras-transformed human fibroblasts exhibit differential changes in contraction and migration in 3D collagen matrices. Exp. Cell Res. 314:3081–3091, 2008.

    Article  Google Scholar 

  31. Menon, S., and K. A. Beningo. Cancer cell invasion is enhanced by applied mechanical stimulation. PLoS ONE 6:e17277, 2011.

    Article  Google Scholar 

  32. Miller, E. D., K. Li, T. Kanade, L. E. Weiss, L. M. Walker, and P. G. Campbell. Spatially directed guidance of stem cell population migration by immobilized patterns of growth factors. Biomaterials 32:2775–2785, 2011.

    Article  Google Scholar 

  33. Miron-Mendoza, M., J. Seemann, and F. Grinnell. Collagen fibril flow and tissue translocation coupled to fibroblast migration in 3D collagen matrices. Mol. Biol. Cell 19:2051–2058, 2008.

    Article  Google Scholar 

  34. Nelson, C. M., and M. J. Bissell. Modeling dynamic reciprocity: engineering three-dimensional culture models of breast architecture, function, and neoplastic transformation. Semin. Cancer Biol. 15:342–352, 2005.

    Article  Google Scholar 

  35. Packard, B. Z., V. V. Artym, A. Komoriya, and K. M. Yamada. Direct visualization of protease activity on cells migrating in three-dimensions. Matrix Biol. 28:3–10, 2009.

    Article  Google Scholar 

  36. Petroll, W. M., and L. Ma. Direct, dynamic assessment of cell-matrix interactions inside fibrillar collagen lattices. Cell Motil. Cytoskeleton 55:254–264, 2003.

    Article  Google Scholar 

  37. Petroll, W. M., L. Ma, and J. V. Jester. Direct correlation of collagen matrix deformation with focal adhesion dynamics in living corneal fibroblasts. J. Cell Sci. 116:1481–1491, 2003.

    Article  Google Scholar 

  38. Provenzano, P. P., D. R. Inman, K. W. Eliceiri, J. G. Knittel, L. Yan, C. T. Rueden, J. G. White, and P. J. Keely. Collagen density promotes mammary tumor initiation and progression. BMC Med. 6:11, 2008.

    Article  Google Scholar 

  39. Provenzano, P. P., D. R. Inman, K. W. Eliceiri, S. M. Trier, and P. J. Keely. Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization. Biophys. J. 95:5374–5384, 2008.

    Article  Google Scholar 

  40. Riento, K., and A. J. Ridley. Rocks: multifunctional kinases in cell behaviour. Nat. Rev. Mol. Cell Biol. 4:446–456, 2003.

    Article  Google Scholar 

  41. Sahai, E., and C. J. Marshall. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat. Cell Biol. 5:711–719, 2003.

    Article  Google Scholar 

  42. Scanlon, E. F., and S. Murthy. The process of metastasis. CA Cancer J. Clin. 41:301–305, 1991.

    Article  Google Scholar 

  43. Schedin, P., and P. J. Keely. Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression. Cold Spring Harb. Perspect. Biol. 3:a003228, 2011.

    Article  Google Scholar 

  44. Shieh, A. C., H. A. Rozansky, B. Hinz, and M. A. Swartz. Tumor cell invasion is promoted by interstitial flow-induced matrix priming by stromal fibroblasts. Cancer Res. 71:790–800, 2011.

    Article  Google Scholar 

  45. Sporn, M. B. The war on cancer. Lancet 347:1377–1381, 1996.

    Article  Google Scholar 

  46. Vishwanath, M., L. Ma, C. A. Otey, J. V. Jester, and W. M. Petroll. Modulation of corneal fibroblast contractility within fibrillar collagen matrices. Invest. Ophthalmol. Vis. Sci. 44:4724–4735, 2003.

    Article  Google Scholar 

  47. Wirtz, D., K. Konstantopoulos, and P. C. Searson. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11:512–522, 2011.

    Article  Google Scholar 

  48. Wolf, K., I. Mazo, H. Leung, K. Engelke, U. H. von Andrian, E. I. Deryugina, A. Y. Strongin, E. B. Brocker, and P. Friedl. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160:267–277, 2003.

    Article  Google Scholar 

  49. Wolf, K., Y. I. Wu, Y. Liu, J. Geiger, E. Tam, C. Overall, M. S. Stack, and P. Friedl. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat. Cell Biol. 9:893–904, 2007.

    Article  Google Scholar 

  50. Wolf, K., S. Alexander, V. Schacht, L. M. Coussens, U. H. von Andrian, J. van Rheenen, E. Deryugina, and P. Friedl. Collagen-based cell migration models in vitro and in vivo. Semin. Cell Dev. Biol. 20:931–941, 2009.

    Article  Google Scholar 

  51. Wong, L. H., N. A. Kurniawan, H.-P. Too, and R. Rajagopalan. Spatially resolved microrheology of heterogeneous biopolymer hydrogels using covalently bound microspheres. Biomech. Model. Mechanobiol. 2013. doi:10.1007/s10237-013-0538-4.

  52. Yu, X., and L. M. Machesky. Cells assemble invadopodia-like structures and invade into matrigel in a matrix metalloprotease dependent manner in the circular invasion assay. PLoS ONE 7:e30605, 2012.

    Article  Google Scholar 

  53. Zaman, M. H. The role of engineering approaches in analysing cancer invasion and metastasis. Nat. Rev. Cancer 13:596–603, 2013.

    Article  Google Scholar 

Download references

Acknowledgments

Supports provided by the Global Enterprise for Micro-Mechanics and Molecular Medicine (GEM4) and the NUS Graduate School for Integrative Sciences and Engineering are gratefully acknowledged.

Conflict of interest

W. Sun, N. A. Kurniawan, A. P. Kumar, R. Rajagopalan, and C. T. Lim declare that they have no conflicts of interest.

Ethical Standards

No human or animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Agung Kurniawan.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Electronic supplementary material

Movie S1. Migrating cells (red) in 3D collagen (green) projected to the X–Y plane on the 12th day of growth, when the inner gel was on the top of the current view. Notice the cell on the right was moving rapidly while actively reorganizing the collagen network. Time interval between each frame = 10 min, scale bar = 50 μm.

Movie S2. Cell (red) migration in 3D collagen (green) projected to the X–Y plane on the 12th day of growth. Notice the dynamics of the collagen fibers between the two cells the failed collagen bundling and the subsequent stop of the movement of the bottom cell. Time interval between each frame = 5 min, scale bar = 50 μm.

Movie S3. Cell (red) migration in 3D collagen (green) projected to the X–Y plane on the 12th day of growth, when the inner gel was to the right of the current view. A typical cell that is migrating using mesenchymal strategy is pointed out by the white arrow, while a typical cell that is entrapped by the collagen fibers surrounded by neighbor cells is indicated by the white arrow-head. Time interval between each frame = 10 min.

Below is the link to the electronic supplementary material.

Supplementary material 1 (WMV 1778 kb)

Supplementary material 2 (AVI 3096 kb)

Supplementary material 3 (MPG 4846 kb)

Supplementary material 4 (MPG 4652 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, W., Kurniawan, N.A., Kumar, A.P. et al. Effects of Migrating Cell-Induced Matrix Reorganization on 3D Cancer Cell Migration. Cel. Mol. Bioeng. 7, 205–217 (2014). https://doi.org/10.1007/s12195-014-0324-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-014-0324-0

Keywords

Navigation