Skip to main content
Log in

Nanomechanical Characterization of the Triple β-Helix Domain in the Cell Puncture Needle of Bacteriophage T4 Virus

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Beta-solenoids are a class of protein nanotube structures that are observed in virulence factors, prion proteins and amyloid fibrils. Here we investigate the compressive strength of the triple-beta-helix solenoid structure found in the cell puncture needle of the bacteriophage T4 virus. We characterize the compressive mechanical strength of this protein nanotube using full-atomistic molecular dynamics simulations in explicit solvent over a wide range of deformation speeds. We observe that the dynamical behavior, stiffness and failure strength of the structure are strongly dependent on the deformation rate. We illustrate that H-bond rupture initiation is the atomistic mechanism that leads to instability and buckling of the protein nanotube at the peak force. We show that the behavior of the protein under small compressive deformation can be approximated by a rate-dependent linear elastic modulus, which can be used in context of a continuum Euler buckling formula for the triple-helix geometry to predict the failure load. Our work provides a link between the structure and biofunctional properties of this beta-solenoid topology, and illustrates a rigorous framework for bridging the gap between experimental and simulation time-scales for future compression studies on proteins. Our study is relevant to self-assembling peptide nanotube materials, and may provide insight into the influence of mechanical properties on the pathological pathways of virulence factors, prions and amyloids found in neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ackbarow, T., et al. (2007). Hierarchies, multiple energy barriers, and robustness govern the fracture mechanics of alpha-helical and beta-sheet protein domains. Proc Natl Acad Sci USA 104(42):16410–16415.

    Article  Google Scholar 

  2. Bernstein, F.C., et al., The Protein Data Bank: computer-based archival file for macromolecular structures. J. Mol. Biol., 1977. 112(3): p. 535–542.

    Article  Google Scholar 

  3. Brändén, C.-I., and J. Tooze, Introduction to Protein Structure, 2nd ed. New York: Garland Publishing, xiv, 410 pp, 1999

  4. Buehler, M. J., Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc. Natl. Acad. Sci. USA, 2006. 103(33): p. 12285–12290.

    Article  Google Scholar 

  5. Buehler, M. and S. Wong, Entropic elasticity controls nanomechanics of single tropocollagen molecules. Biophys. J., 2007. 93(1): p. 37–43.

    Article  Google Scholar 

  6. Buschmann, M.D. and A.J. Grodzinsky, A molecular-model of proteoglycan-associated electrostatic forces in cartilage mechanics. J. Biomech. Eng. Trans. ASME, 1995. 117(2): p. 179–192.

    Article  Google Scholar 

  7. Chiti, F. and C.M. Dobson, Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem., 2006. 75: p. 333–366.

    Article  Google Scholar 

  8. Cox, D.L., et al., The materials science of protein aggregation. MRS Bull., 2005. 30(6): p. 452–457.

    Google Scholar 

  9. da Silva, A. and O. Teschke, Dynamics of the antimicrobial peptide PGLa action on Escherichia coli monitored by atomic force microscopy. World J. Microbiol. Biotechnol., 2005. 21(6–7): p. 1103–1110.

    Article  Google Scholar 

  10. Gittes, F., et al., Flexural rigidity of microtubules and actin-filaments measured from thermal fluctuations in shape. J. Cell Biol., 1993. 120(4): p. 923–934.

    Article  Google Scholar 

  11. Govaerts, C., et al., Evidence for assembly of prions with left-handed beta 3-helices into trimers. Proc. Natl. Acad. Sci. USA, 2004. 101(22): p. 8342–8347.

    Article  Google Scholar 

  12. Graether, S., et al., beta-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. NATURE, 2000. 406(6793): p. 325–328.

    Article  Google Scholar 

  13. Hansma, H. G., et al., Probing biopolymers with the atomic force microscope: A review. J. Biomater. Sci. Polym. Ed., 2000. 11(7): p. 675–683.

    Article  Google Scholar 

  14. Hibbeler, R.C., Statics and Mechanics of Materials. 2 ed. 2005, Englewood Cliffs, NJ: Prentice Hall. 800.

    Google Scholar 

  15. Humphrey, W., A. Dalke, and K. Schulten (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38.

    Article  Google Scholar 

  16. Isralewitz, B., M. Gao, and K. Schulten, Steered molecular dynamics and mechanical functions of proteins. Curr. Opin. Struct. Biol., 2001. 11(2): p. 224–230.

    Article  Google Scholar 

  17. Kajava, A., J. Squire, and D. Parry (2006) Beta-structures in fibrous proteins. Adv Protein Chem 73:1–15.

    Article  Google Scholar 

  18. Kanamaru, S., et al., Structure of the cell-puncturing device of bacteriophage T4. Nature, 2002. 415(6871): p. 553–557.

    Article  Google Scholar 

  19. Kellermayer, M.S.Z., et al., Reversible mechanical unzipping of amyloid beta-fibrils. J. Biol. Chem., 2005. 280(9): p. 8464–8470.

    Article  Google Scholar 

  20. Keten, S. and M.J. Buehler, Large deformation and fracture mechanics of a beta-helical protein nanotube: Atomistic and continuum modeling. Comput. Methods Appl. Mech. Eng., 2008. 197(41–42): p. 3203–3214.

    Article  MathSciNet  Google Scholar 

  21. Keten, S. and M.J. Buehler, Geometric confinement governs the rupture strength of H-bond assemblies at a critical length scale. Nano Lett., 2008. 8(2): p. 743–748.

    Article  Google Scholar 

  22. 27. Keten, S., and M. J. Buehler (2008) Asymptotic strength limit of hydrogen bond assemblies in proteins at vanishing pulling rates. Phys Rev Lett 100(19):198301.

    Article  Google Scholar 

  23. Kishimoto, A., et al., beta-Helix is a likely core structure of yeast prion Sup35 amyloid fibers. Biochem. Biophys. Res. Commun. 2004. 315(3): p. 739–745.

    Article  Google Scholar 

  24. Knowles, T.P., et al., Role of intermolecular forces in defining material properties of protein nanofibrils. Science, 2007. 318(5858): p. 1900–1903.

    Article  Google Scholar 

  25. MacKerell, A.D., et al., All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B, 1998. 102(18): p. 3586–3616.

    Article  Google Scholar 

  26. Marszalek, P.E., et al., Mechanical unfolding intermediates in titin modules. Nature, 1999. 402(6757): p. 100–103.

    Article  Google Scholar 

  27. Mitraki, A., S. Miller, and M.J. van Raaij, Review: Conformation and folding of novel beta-structural elements in viral fiber proteins: the triple beta-spiral and triple beta-helix. J. Struct. Biol., 2002. 137(1–2): p. 236–247.

    Article  Google Scholar 

  28. Mostaert, A. S., and S. P. Jarvis (2007). Beneficial characteristics of mechanically functional amyloid fibrils evolutionarily preserved in natural adhesives. Nanotechnology 18(4):044010.

    Article  Google Scholar 

  29. Mucke, N., et al., Assessing the flexibility of intermediate filaments by atomic force microscopy. J. Mol. Biol., 2004. 335(5): p. 1241–1250.

    Article  Google Scholar 

  30. Nelson, M.T., et al., NAMD: A parallel, object oriented molecular dynamics program. Int. J. Supercomput. Appl. High Perform. Comput., 1996. 10(4): p. 251–268.

    Article  Google Scholar 

  31. Oroudjev, E., et al., Segmented nanofibers of spider dragline silk: Atomic force microscopy and single-molecule force spectroscopy. Proceedings of the National Academy of Sciences, 2002. 99(Suppl 2): p. 6460–6465.

    Article  Google Scholar 

  32. Rief, M., et al., Reversible unfolding of individual titin immunoglobulin domains by AFM. Science, 1997. 276(5315): p. 1109–1112.

    Article  Google Scholar 

  33. Rief, M., et al., The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by atomic force microscopy. Biophys. J., 1998. 75(6): p. 3008–3014.

    Article  Google Scholar 

  34. Ritter, C., et al., Correlation of structural elements and infectivity of the HET-s prion. Nature, 2005. 435(7043): p. 844–848.

    Article  Google Scholar 

  35. Smith, J.F., et al., Characterization of the nanoscale properties of individual amyloid fibrils. Proc. Natl. Acad. Sci. USA, 2006. 103(43): p. 15806–15811.

    Article  Google Scholar 

  36. Sotomayor, M. and K. Schulten, Single-molecule experiments in vitro and in silico. Science, 2007. 316(5828): p. 1144–1148.

    Article  Google Scholar 

  37. Sun, Y.L., et al., Direct quantification of the flexibility of type I collagen monomer. Biochem. Biophys. Res. Commun., 2002. 295(2): p. 382–386.

    Article  Google Scholar 

  38. Wasmer, C., et al., Amyloid fibrils of the HET-s(218–289) prion form a beta solenoid with a triangular hydrophobic core. SCIENCE, 2008. 319(5869): p. 1523–1526.

    Article  Google Scholar 

  39. Yoder, M.D., S.E. Lietzke, and F. Jurnak, Unusual Structural Features in the Parallel Beta-Helix in Pectate Lyases. Structure, 1993. 1(4): p. 241–251.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Office of Naval Research (Grant No.: N000140810844). The authors acknowledge a supercomputing grant at the San Diego Supercomputing Center (SDSC), as well as a large-scale computation grant from NSF TeraGrid system (Grant No.: MSS080030). The authors acknowledge helpful discussions with Prof. Matt Lang. J.F.R.A. acknowledges support from the Undergraduate Research Opportunities Program Office at MIT through the Paul E. Gray (1954) Endowed Fund for UROP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus J. Buehler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keten, S., Rodriguez Alvarado, J.F., Müftü, S. et al. Nanomechanical Characterization of the Triple β-Helix Domain in the Cell Puncture Needle of Bacteriophage T4 Virus. Cel. Mol. Bioeng. 2, 66–74 (2009). https://doi.org/10.1007/s12195-009-0047-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-009-0047-9

Keywords

Navigation