Skip to main content

Advertisement

Log in

Energy dependence measurement of small-type optically stimulated luminescence (OSL) dosimeter by means of characteristic X-rays induced with general diagnostic X-ray equipment

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

For X-ray inspections by way of general X-ray equipment, it is important to measure an entrance-skin dose. Recently, a small optically stimulated luminescence (OSL) dosimeter was made commercially available by Landauer, Inc. The dosimeter does not interfere with the medical images; therefore, it is expected to be a convenient detector for measuring personal exposure doses. In an actual clinical situation, it is assumed that X-rays of different energies will be detected by a dosimeter. For evaluation of the exposure dose measured by a dosimeter, it is necessary to know the energy dependence of the dosimeter. Our aim in this study was to measure the energy dependence of the OSL dosimeter experimentally in the diagnostic X-ray region. Metal samples weighing several grams were irradiated and, in this way, characteristic X-rays having energies ranging from 8 to 85 keV were generated. Using these mono-energetic X-rays, the dosimeter was irradiated. Simultaneously, the fluence of the X-rays was determined with a CdTe detector. The energy-dependent efficiency of the dosimeter was derived from the measured value of the dosimeter and the fluence. Moreover, the energy-dependent efficiency was calculated by Monte-Carlo simulation. The efficiency obtained in the experiment was in good agreement with that of the simulation. In conclusion, our proposed method, in which characteristic X-rays are used, is valuable for measurement of the energy dependence of a small OSL dosimeter in the diagnostic X-ray region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Uffmann M, Prokop CS. Digital radiography: the balance between image quality and required radiation dose. Eur J Radiol. 2009;72:202–8.

    Article  PubMed  Google Scholar 

  2. Berrington de Gonzalez A, Darby S. Risk of cancer from diagnostic X-ray: estimates for the UK and 14 other countries. Lancet. 2004;363:345–51.

    Article  PubMed  Google Scholar 

  3. Komiya I, Shirasaka T, Umezu Y, Tachibana M, Izumi T. Patient dose measurement with fluorescent glass dosimeter: characteristics evaluation and patient skin dose measurement in abdominal interventional radiology. Jpn J Radiol Technol. 2003;60(2):270–7 (in Japanese).

    Google Scholar 

  4. Shortt CP, Malone L, Thornton J, Brennan P, Lee MJ. Radiation protection to the eye and thyroid during diagnostic cerebral angiography: a phantom study. J Med Imaging Radiat Oncol. 2008;52:365–9.

    Article  CAS  PubMed  Google Scholar 

  5. Matsunaga Y, Kawaguchi A, Kobayashi K, Asada Y, Takikawa Y, Yamada M, Suzuki S. Dose estimation for exposure conditions of diagnostic radiology acquired by a 2011 questionnaire in a phantom study. Jpn J Radiol Technol. 2013;69(12):1372–8 (in Japanese).

    Article  Google Scholar 

  6. Grosswendt B. Backscatter factors for x-rays generated at voltages between 10 and 100 keV. Phys Med Biol. 1954;29(5):579–91.

    Article  Google Scholar 

  7. Klevenhagen SC. Experimentally determined backscatter factors for x-rays generated at voltages between 16 and 140 kV. Phys Med Biol. 1989;34(12):1871–82.

    Article  Google Scholar 

  8. Grosswendt B. Dependences of the photon backscatter factor for water on source-to-phantom distance and irradiation field size. Phys Med Biol. 1990;35(9):1233–45.

    Article  Google Scholar 

  9. Kato H. Method of calculating the backscatter factor for diagnostic X-rays using the differential backscatter factor. Jpn J Radiol Technol. 2001;57(12):1503–10 (in Japanese).

    Google Scholar 

  10. Jursinic PA. Characterization of optically stimulated luminescent dosimeters, OSLDs, for clinical dosimetric measurements. Med Phys. 2007;34(12):4594–604.

    Article  PubMed  Google Scholar 

  11. Reft CS. The energy dependence and dose response of a commercial optically stimulated luminescent detector for kilovoltage photon, megavoltage photon, and electron, proton, and carbon beams. Med Phys. 2009;36(5):1690–9.

    Article  CAS  PubMed  Google Scholar 

  12. Lehmann J, Dunn L, Lye JE, Kenny JW, Alves ADC, Cole A, Asena A, Kron T, Williams IM. Angular dependence of the response of the nanoDot OSLD system for measurements at depth in clinical megavoltage beams. Med Phys. 2014;41(6):061712-1-9.

    Google Scholar 

  13. Kerns JR, Kry SF, Sahoo N, Followill DS, Ibbott GS. Angular dependence of the nanoDot OSL dosimeter. Med Phys. 2011;38(7):3955–62.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Hayashi H, Nakagawa K, Okino H, Takegami K, Okazaki T, Kobayashi I. High accuracy measurements by consecutive readings of OSL dosimeter. Med Imaging Inf Sci. 2014;31(2):28–34 (in Japanese).

    Google Scholar 

  15. Takegami K, Hayashi H, Nakagawa K, Okino H, Okazaki T, Kobayashi I. Measurement method of an exposed dose using the nanoDot dosimeter. Eur Congr Radiol (EPOS). 2015;. doi:10.1594/ecr2015/C-0218.

    Google Scholar 

  16. Takegami K, Hayashi H, Okino H, Kimoto N, Maehata I, Kanazawa Y, Tohru O, Kobayashi I. Practical calibration curve of small-type optically stimulated luminescence (OSL) dosimeter for evaluation of entrance-skin dose in the diagnostic X-ray. Radiol Phys Technol. 2015;8(2):286–94.

    Article  PubMed  Google Scholar 

  17. Hayashi H, Takegami K, Okino H, Nakagawa K, Okazaki T, Kobayashi I. Procedure to measure angular dependences of personal dosimeters by means of diagnostic X-ray equipment. Med Imaging Inf Sci. 2015;32(1):8–14.

    Google Scholar 

  18. Okazaki T, Hayashi H, Takegami K, Okino H, Nakagawa K. Evaluation of angular dependence of nanoDot OSL dosimeters toward direct measurement of entrance skin dose. Eur Congr Radiol (EPOS). 2015;. doi:10.1594/ecr2015/C-0721.

    Google Scholar 

  19. Fukuda I, Hayashi H, Takegami K, Konishi Y. Development of an experimental apparatus for energy calibration of a CdTe detector by means of diagnostic X-ray equipment. Jpn J Radiol Technol. 2013;69(9):952–9 (in Japanese).

    Article  Google Scholar 

  20. Okino H, Hayashi H, Nakagawa K, Takegami K. Measurement of response function of CdTe detector using diagnostic X-ray equipment and evaluation of Monte Carlo simulation code. Jpn J Radiol Technol. 2014;70(12):1381–91 (in Japanese).

    Article  Google Scholar 

  21. Nakagawa K, Hayashi H, Okino H, Takegami K, Okazaki T, Kobayashi I. Fabrication of annealing equipment for optically stimulated luminescence (OSL) dosimeter. Jpn J Radiol Technol. 2014;70(10):1135–42 (in Japanese).

    Article  Google Scholar 

  22. Takegami K, Hayashi H, Konishi Y, Fukuda I. Development of multistage collimator for narrow beam production using filter guides of diagnostic X-ray equipment and improvement of apparatuses for practical training. Med Imaging Inf Sci. 2013;30(4):101–7 (in Japanese).

    Google Scholar 

  23. Hirayama H, Yoshihito N, Bielajew AF, Wilderman SJ, Nelson WR. The EGS5 code system. SLAC Report number: SLAC-R-730. KEK Report number: 2005-8; 2013.

  24. Hubbell JH. Photon mass attenuation and energy-absorption coefficients from 1 keV to 20 MeV. Int J Appl Radiat Isot. 1982;33:1269–90.

    Article  CAS  Google Scholar 

  25. ICRU report 47. Measurement of dose equivalents from external photon and electron radiations. Washington D.C.: International Commission on Radiation Units and Measurements; 1992.

  26. Ku HH. Note on the use of propagation of error formulas. J Res Natl Bur Stand C Eng Instrum. 1966;70(4):263–73.

    Article  Google Scholar 

  27. Knoll GF. Radiation detection and measurement. 3rd ed. New York: Wiley; 1992. p. 48–64.

    Google Scholar 

  28. Storm E, Israel HI. Photon cross sections from 1 keV to 100 MeV for elements Z = 1 to Z = 100. Nucl Data Tables. 1970;A7:565–681.

    Article  Google Scholar 

  29. Brooks RA, Chiro GD. Beam hardening in X-ray reconstructive tomography. Phys Med Biol. 1976;21(3):390–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Hayashi.

Ethics declarations

Conflict of interest

T. Okazaki, T. Hashizume, and I. Kobayashi are employees of Nagase Landauer, Ltd., and are collaborating researchers.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takegami, K., Hayashi, H., Okino, H. et al. Energy dependence measurement of small-type optically stimulated luminescence (OSL) dosimeter by means of characteristic X-rays induced with general diagnostic X-ray equipment. Radiol Phys Technol 9, 99–108 (2016). https://doi.org/10.1007/s12194-015-0339-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-015-0339-9

Keywords

Navigation