Skip to main content

Advertisement

Log in

Bilateral breast MRI by use of dual-source parallel radiofrequency excitation and image-based shimming at 3 Tesla: improvement in homogeneity on fat-suppression imaging

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

In this study, we aimed to compare fat-suppression homogeneity on breast MR imaging by using dual-source parallel radiofrequency excitation and image-based shimming (DS-IBS) with single-source radiofrequency excitation with volume shim (SS-Vol) at 3 Tesla. Twenty patients were included. Axial three-dimensional T1-weighted turbo-field-echo breast images with DS-IBS and SS-Vol were obtained. Fat suppression was scored with four grade points. The contrast of the pectoral muscle and the fat in each breast area was obtained in the head medial, head lateral, foot medial, and foot lateral areas. The axillary space was calculated and compared between DS-IBS and SS-Vol. The average DS-IBS score was significantly higher than that of SS-Vol. The mean contrasts of fat in the foot lateral areas and axillary spaces on DS-IBS images were significantly higher than on SS-Vol images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kuhl CK, Kooijman H, Gieseke J, et al. Effect of B1 inhomogeneity on breast MR imaging at 3.0 T. Radiology. 2007;244(3):929–30.

    Article  PubMed  Google Scholar 

  2. Azlan CA, Di Giovanni P, Ahearn TS, et al. B1 transmission-field inhomogeneity and enhancement ratio errors in dynamic contrast-enhanced MRI (DCE-MRI) of the breast at 3T. J Magn Reson Imaging. 2010;31(1):234–9.

    Article  PubMed  Google Scholar 

  3. Sung K, Daniel BL, Hargreaves BA. Transmit B1+ field inhomogeneity and T1 estimation errors in breast DCE-MRI at 3 tesla. J Magn Reson Imaging. 2013;38(2):454–9.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Nelles M, Konig RS, Gieseke J, et al. Dual-source parallel RF transmission for clinical MR imaging of the spine at 3.0 T: intraindividual comparison with conventional single-source transmission. Radiology. 2010;257(3):743–53.

    Article  PubMed  Google Scholar 

  5. de Kerviler E, Leroy-Willig A, Clement O, Frija J. Fat suppression techniques in MRI: an update. Biomed Pharmacother. 1998;52(2):69–75.

    Article  PubMed  Google Scholar 

  6. Orel SG, Schnall MD. MR imaging of the breast for the detection, diagnosis, and staging of breast cancer. Radiology. 2001;220(1):13–30.

    Article  CAS  PubMed  Google Scholar 

  7. Kuhl CK, Jost P, Morakkabati N, Zivanovic O, Schild HH, Gieseke J. Contrast-enhanced MR imaging of the breast at 3.0 and 1.5 T in the same patients: initial experience. Radiology. 2006;239(3):666–76.

    Article  PubMed  Google Scholar 

  8. Le-Petross H, Kundra V, Szklaruk J, Wei W, Hortobagyi GN, Ma J. Fast three-dimensional dual echo dixon technique improves fat suppression in breast MRI. J Magn Reson Imaging. 2010;31(4):889–94.

    Article  PubMed  Google Scholar 

  9. Brown R, Storey P, Geppert C, et al. Breast MRI at 7 Tesla with a bilateral coil and T1-weighted acquisition with robust fat suppression: image evaluation and comparison with 3 Tesla. Eur Radiol. 2013;23(11):2969–78.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Haase A, Frahm J, Hanicke W, et al. 1H NMR chemical shift selective (CHESS) imaging. Phys Med Biol. 1985;30(4):341–4.

    Article  CAS  PubMed  Google Scholar 

  11. Rahbar H, Partridge SC, Demartini WB, et al. Improved B1 homogeneity of 3 Tesla breast MRI using dual-source parallel radiofrequency excitation. J Magn Reson Imaging. 2012;35(5):1222–6.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Schar M, Kozerke S, Fischer SE, et al. Cardiac SSFP imaging at 3 Tesla. Magn Reson Med. 2004;51(4):799–806.

    Article  PubMed  Google Scholar 

  13. Simonetti AW, Holthuizen R, Harder CJ, et al. 3D breast segmentation for image based shimming. Proc Int Soc Magn Reson Med. 2009;17:2114.

    Google Scholar 

  14. Siegelman ES, Charafeddine R, Stolpen AH, Axel L. Suppression of intravascular signal on fat-saturated contrast-enhanced thoracic MR arteriograms. Radiology. 2000;217(1):115–8.

    Article  CAS  PubMed  Google Scholar 

  15. Lee J, Lustig M, Kim DH, Pauly JM. Improved shim method based on the minimization of the maximum off-resonance frequency for balanced steady-state free precession (bSSFP). Magn Reson Med. 2009;61(6):1500–6.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Maril N, Collins CM, Greenman RL, et al. Strategies for shimming the breast. Magn Reson Med. 2005;54(5):1139–45.

    Article  PubMed  Google Scholar 

  17. Hsu JJ, Glover GH. Mitigation of susceptibility-induced signal loss in neuroimaging using localized shim coils. Magn Reson Med. 2005;53(2):243–8.

    Article  PubMed  Google Scholar 

  18. Takatsu Y, Nishiyama K, Miyati T, et al. A comparison of shimming techniques for optimizing fat suppression in MR mammography. Radiol Phys Technol. 2013;6(2):486–91.

    Article  PubMed  Google Scholar 

  19. Han M, Cunningham CH, Pauly JM, et al. Homogeneous fat suppression for bilateral breast imaging using independent shims. Magn Reson Med. 2014;71(4):1511–7.

    Article  PubMed  Google Scholar 

  20. Bley TA, Wieben O, Francois CJ, Brittain JH, Reeder SB. Fat and water magnetic resonance imaging. J Magn Reson Imaging. 2010;31(1):4–18.

    Article  PubMed  Google Scholar 

  21. Kaldoudi E, Williams SC, Barker GJ, Tofts PS. A chemical shift selective inversion recovery sequence for fat-suppressed MRI: theory and experimental validation. Magn Reson Imaging. 1993;11(3):341–55.

    Article  CAS  PubMed  Google Scholar 

  22. Glover GH. Multipoint dixon technique for water and fat proton and susceptibility imaging. J Magn Reson Imaging. 1991;1(5):521–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they had no conflict of interest in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinya Ishizaka.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishizaka, K., Kato, F., Terae, S. et al. Bilateral breast MRI by use of dual-source parallel radiofrequency excitation and image-based shimming at 3 Tesla: improvement in homogeneity on fat-suppression imaging. Radiol Phys Technol 8, 4–12 (2015). https://doi.org/10.1007/s12194-014-0278-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-014-0278-x

Keywords

Navigation