Skip to main content
Log in

Intrinsic spatial resolution evaluation of the X’tal cube PET detector based on a 3D crystal block segmented by laser processing

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

The X’tal cube is a depth-of-interaction (DOI)-PET detector which is aimed at obtaining isotropic resolution by effective readout of scintillation photons from the six sides of a crystal block. The X’tal cube is composed of the 3D crystal block with isotropic resolution and arrays of multi-pixel photon counters (MPPCs). In this study, to fabricate the 3D crystal block efficiently and precisely, we applied a sub-surface laser engraving (SSLE) technique to a monolithic crystal block instead of gluing segmented small crystals. The SSLE technique provided micro-crack walls which carve a groove into a monolithic scintillator block. Using the fabricated X’tal cube, we evaluated its intrinsic spatial resolution to show a proof of concept of isotropic resolution. The 3D grids of 2 mm pitch were fabricated into an 18 × 18 × 18 mm3 monolithic lutetium yttrium orthosilicate (LYSO) crystal by the SSLE technique. 4 × 4 MPPCs were optically coupled to each surface of the crystal block. The X’tal cube was uniformly irradiated by 22Na gamma rays, and all of the 3D grids on the 3D position histogram were separated clearly by an Anger-type calculation from the 96-channel MPPC signals. Response functions of the X’tal cube were measured by scanning with a 22Na point source. The gamma-ray beam with a 1.0 mm slit was scanned in 0.25 mm steps by positioning of the X’tal cube at vertical and 45° incident angles. The average FWHM resolution at both incident angles was 2.1 mm. Therefore, we confirmed the isotropic spatial resolution performance of the X’tal cube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dahlbom M, MacDonald LR, Schmand M, Eriksson L, Andreaco M, Williams C. A YSO/LSO phoswich array detector for single and coincidence photon imaging. IEEE Trans Nucl Sci. 1998;45:1128–32.

    Article  Google Scholar 

  2. Schmand M, Eriksson L, Casey ME, Andreaco MS, Melcher C, Wienhard K, Flugge G, Nutt R. Performance results of a new DOI detector block for a high resolution PET-LSO research tomograph HRRT. IEEE Trans Nucl Sci. 1998;45:3000–6.

    Article  Google Scholar 

  3. Schmand M, Eriksson L, Casey ME, Wienhard K, Flugge G, Nutt R. Advantages using pulse shape discrimination to assign the depth of interaction information (DOI) from a multi layer phoswich detector. IEEE Trans Nucl Sci. 1999;46:985–90.

    Article  Google Scholar 

  4. Seidel J, Vaquero JJ, Siegel S, Gandler WR, Green MV. Depth identification accuracy of a three layer phoswich PET detector module. IEEE Trans Nucl Sci. 1999;46:485–90.

    Article  CAS  Google Scholar 

  5. McElroy DP, Pimpl W, Pichler BJ, Rafecas M, Schüler T, Ziegler SI. Characterization and readout of MADPET-II detector modules: validation of a unique design concept for high resolution small animal PET. IEEE Trans Nucl Sci. 2005;52:199–204.

    Article  Google Scholar 

  6. Inadama N, Murayama H, Yamaya T, Kitamura K, Yamashita T, Kawai H, Tsuda T, Sato M, Ono Y, Hamamoto M. Preliminary evaluation of four-layer BGO DOI-detector for PET. IEEE Trans Nucl Sci. 2006;53:30–4.

    Article  CAS  Google Scholar 

  7. Tsuda T, Murayama H, Kitamura K, Inadama N, Yamaya T, Yoshida E, Nishikido F, Mamamoto M, Kawai H, Ono Y. Performance evaluation of a subset of a four-layer LSO detector for a small animal DOI PET scanner: jPET-RD. IEEE Trans Nucl Sci. 2006;53:35–9.

    Article  CAS  Google Scholar 

  8. Wang Y, Seidel J, Tsui BMW, Vaquero JJ, Pomper MG. Performance evaluation of the GE healthcare eXplore VISTA dual-ring small-animal PET scanner. J Nucl Med. 2006;47:1891–900.

    PubMed  Google Scholar 

  9. Yang Y, Wu Y, Qi J, James S, Du H, Dokhale PA, Shah K, Ferrell R, Cherry SR. A prototype PET scanner with DOI-encoding detectors. J Nucl Med. 2008;49:1132–40.

    Article  PubMed  Google Scholar 

  10. Bruyndonckx P, Leonard SMA, Tavernier SPK, Lemaitre C, Devroede O, Wu Y, Krieguer M. Neural network-based position estimators for PET detectors using monolithic LSO blocks. IEEE Trans Nucl Sci. 2004;51:2520–5.

    Article  Google Scholar 

  11. Maas MC, van der Laan DJ, Schaart DR, Huizenga J, Brouwer JC, Bruyndonckx P, Leonard S, Lemaitre C, van Eijk CWE. Experimental characterization of monolithic-crystal small animal PET detectors read out by APD arrays. IEEE Trans Nucl Sci. 2006;53:1071–7.

    Article  Google Scholar 

  12. Maas MC, Schaart DR, Van Der Laan DJ, Van Dam HT, Huizenga J, Brouwer JC, Bruyndonckx P, Lameitre C, van Eijk CWE. Signal to noise ratio of APD-based monolithic scintillator detectors for high resolution PET. IEEE Trans Nucl Sci. 2008;55:842–52.

    Article  CAS  Google Scholar 

  13. Maas MC, Schaart DR, van der Laan DJ, Bruyndonckx P, Lemaitre C, Beekman FJ, van Eijk CWE. Monolithic scintillator PET detectors with intrinsic depth-of-interaction correction. Phys Med Biol. 2009;54:1893–908.

    Article  PubMed  Google Scholar 

  14. Pani R, Cinti MN, Pellegrini R, Bennati P, Betti M, Vittorini F, Mattioli M, Trotta G, Cencelli OV, Scafe R, Navarria F, Bollini D, Baldazzi G, Moschini G, Notaristefani F. LaBr3:Ce scintillation gamma camera prototype for X and gamma ray imaging. Nucl Instr Meth A. 2007;576:15–8.

    Article  CAS  Google Scholar 

  15. Ling T, Lee K, Miyaoka RS. Performance comparisons of continuous miniature crystal element (cMiCE) detectors. IEEE Trans Nucl Sci. 2006;53:2513–8.

    Article  CAS  Google Scholar 

  16. Ling T, Lewellen TK, Miyaoka RS. Depth of interaction decoding of a continuous crystal detector module. Phys Med Biol. 2007;52:2213–28.

    Article  PubMed  CAS  Google Scholar 

  17. Dennis RS, Herman TD, Stefan S, Vinke R, Dendooven P, Lohner H, Beekman FJ. A novel, SiPM-array-based, monolithic scintillator detector for PET. Phys Med Biol. 2009;54:3501–12.

    Article  Google Scholar 

  18. Balcerzyk M, Kontaxakis G, Delgado M, Garcia-Garcia L, Correcher C, Gonzalez AJ, Gonzalez A, Rubio JL, Benlloch JM, Poza MA. Initial performance evaluation of a high resolution Albira small animal positron emission tomography scanner with monolithic crystals and depth-of-interaction encoding from a user’s perspective. Meas Sci Technol. 2009;20:104011.

    Article  Google Scholar 

  19. Van der Laan DJ, Schaart DR, Maas MC, Beekman FJ, Bruyndonckx P, Van Eijk CW. Optical simulation of monolithic scintillator detectors using GATE/GEANT4. Phys Med Biol. 2010;55:1659–75.

    Article  PubMed  Google Scholar 

  20. Yoshida E, Inadama N, Osada H, Kawai H, Nishikido F, Murayama H, Tsuda T, Yamaya T. Basic performance of a large area PET detector with a monolithic scintillator. Radiol Phys Technol. 2011;4:134–9.

    Article  PubMed  Google Scholar 

  21. Clément D, Frei R, Loude J F, Morel C. Development of a 3D position sensitive scintillation detector using neural networks. In: 1998 IEEE NSS MIC; 1998. p. 1448–1452.

  22. LeBlanc JW, Thompson RA. A novel PET detector block with three-dimensional hit position encoding. IEEE Trans Nucl Sci. 2004;51:746–51.

    Article  Google Scholar 

  23. Yamaya T, Mitsuhashi T, Matsumoto T, Inadama N, Nishikido F, Yoshida E, Murayama H, Kawai H, Suga M, Watanabe M. A SiPM-based isotropic-3D PET detector X’tal cube with a three-dimensional array of 1 mm3 crystals. Phys Med Biol. 2011;56:6793–807.

    Article  PubMed  CAS  Google Scholar 

  24. Yazaki Y, Murayama H, Inadama N, Osada H, Nishikido F, Shibuya K, Yamaya T, Yoshida E, Suga M, Moriya T, Watanabe M, Yamashita T, Kawai H. The ‘X’tal cube’ PET detector: 3D scintillation photon detection of a 3D crystal array using MPPCs. In: Conf. Rec. of the 2009 IEEE NSS MIC; 2009. p. 3822–3826.

  25. Moriya T, Fukumitsu K, Sakai T, Ohsuka S, Okamoto T, Takahashi H, Watanabe M, Yamashita T. Development of PET detectors using monolithic scintillation crystals processed with sub-surface laser engraving technique. IEEE Trans Nucl Sci. 2010;57:2455–9.

    Article  CAS  Google Scholar 

  26. Inadama N, Murayama H, Nishikido F, Yoshida E, Tashima H, Moriya T, Yamaya T. Performance evaluation of the X’tal cube PET detector using a monolithic scintillator segmented by laser processing. J Nucl Med. 2011;52(Suppl 1):322.

    Google Scholar 

Download references

Acknowledgments

This research was supported by a fund from the Japan Science and Technology Agency (JST), Development of Systems and Technology for Advanced Measurement and Analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Yoshida.

About this article

Cite this article

Yoshida, E., Tashima, H., Inadama, N. et al. Intrinsic spatial resolution evaluation of the X’tal cube PET detector based on a 3D crystal block segmented by laser processing. Radiol Phys Technol 6, 21–27 (2013). https://doi.org/10.1007/s12194-012-0167-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-012-0167-0

Keywords

Navigation