Journal on Multimodal User Interfaces

, Volume 7, Issue 1, pp 157–170

A multi-modal dance corpus for research into interaction between humans in virtual environments

  • Slim Essid
  • Xinyu Lin
  • Marc Gowing
  • Georgios Kordelas
  • Anil Aksay
  • Philip Kelly
  • Thomas Fillon
  • Qianni Zhang
  • Alfred Dielmann
  • Vlado Kitanovski
  • Robin Tournemenne
  • Aymeric Masurelle
  • Ebroul Izquierdo
  • Noel E. O’Connor
  • Petros Daras
  • Gaël Richard
Original Paper

DOI: 10.1007/s12193-012-0109-5

Cite this article as:
Essid, S., Lin, X., Gowing, M. et al. J Multimodal User Interfaces (2013) 7: 157. doi:10.1007/s12193-012-0109-5

Abstract

We present a new, freely available, multimodal corpus for research into, amongst other areas, real-time realistic interaction between humans in online virtual environments. The specific corpus scenario focuses on an online dance class application scenario where students, with avatars driven by whatever 3D capture technology is locally available to them, can learn choreographies with teacher guidance in an online virtual dance studio. As the dance corpus is focused on this scenario, it consists of student/teacher dance choreographies concurrently captured at two different sites using a variety of media modalities, including synchronised audio rigs, multiple cameras, wearable inertial measurement devices and depth sensors. In the corpus, each of the several dancers performs a number of fixed choreographies, which are graded according to a number of specific evaluation criteria. In addition, ground-truth dance choreography annotations are provided. Furthermore, for unsynchronised sensor modalities, the corpus also includes distinctive events for data stream synchronisation. The total duration of the recorded content is 1 h and 40 min for each single sensor, amounting to 55 h of recordings across all sensors. Although the dance corpus is tailored specifically for an online dance class application scenario, the data is free to download and use for any research and development purposes.

Keywords

Dance Multimodal data Multiview video processing Audio Depth maps Motion Inertial sensors Synchronisation Activity recognition Virtual reality Computer vision Machine listening 

Copyright information

© OpenInterface Association 2012

Authors and Affiliations

  • Slim Essid
    • 1
  • Xinyu Lin
    • 2
  • Marc Gowing
    • 3
  • Georgios Kordelas
    • 2
    • 4
  • Anil Aksay
    • 2
  • Philip Kelly
    • 3
  • Thomas Fillon
    • 1
  • Qianni Zhang
    • 2
  • Alfred Dielmann
    • 1
  • Vlado Kitanovski
    • 2
  • Robin Tournemenne
    • 1
  • Aymeric Masurelle
    • 1
  • Ebroul Izquierdo
    • 2
  • Noel E. O’Connor
    • 3
  • Petros Daras
    • 4
  • Gaël Richard
    • 1
  1. 1.Institut Telecom/Telecom ParisTech, CNRS-LTCIParisFrance
  2. 2.Multimedia and Vision Group (MMV)Queen Mary UniversityLondonUK
  3. 3.CLARITY, Centre for Sensor Web TechnologiesDublin City UniversityDublinIreland
  4. 4.Centre for Research and Technology-HellasInformatics and Telematics InstituteThessaloníkiGreece

Personalised recommendations