Skip to main content
Log in

Ginkgolides and bilobalide protect BV2 microglia cells against OGD/reoxygenation injury by inhibiting TLR2/4 signaling pathways

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Ginkgolide and bilobalide are major trilactone constituent of Ginkgo biloba leaves and have been shown to exert powerful neuroprotective properties. The aims of this study were to observe the inhibitory effects of ginkgolide and bilobalide on the activation of microglial cells induced by oxygen–glucose deprivation and reoxygenation (OGD/R) and the specific mechanisms by which these effects are mediated. For detecting whether ginkgolide and bilobalide increased cell viability in a dose-dependent manner, BV2 cells were subjected to oxygen–glucose deprivation for 4 h followed by 3 h reoxygenation with various concentrations of drugs (6.25, 12.5, 25, 50, and 100 μg/ml). The extent of apoptosis effect of OGD/R with or without ginkgolide and bilobalide treatment were also measured by Annexin V-FITC/PI staining. Similarly, the levels of pro-inflammatory cytokines TNF-α, IL-1β, IL-6, IL-8, and IL-10 were detected using a specific Bio-Plex Pro™ Reagent Kit. The effects of ginkgolide and bilobalide on protein levels of TLR2/4, MyD88, p-TAK1, p-IKKβ, p-IkBα, NF-κB p65, Bcl-2, Bax, Bak, RIP3, cleaved-Caspase-3, cleaved PARP-1 and cellular localization of NF-κB p65 were evaluated by Western blot and double-labeled immunofluorescence staining, respectively. OGD/R significantly decreased the cell viability and increased the release of IL-1β, IL-6, IL-8, IL-10, TNF-α in BV2 microglia cells; these effects were suppressed by ginkgolide and bilobalide. Meanwhile, ginkgolide and bilobalide also attenuated the OGD/R-induced increases in TLR2, TLR4, MyD88, Bak, RIP3 levels and reversed cleaved caspase-3/caspase-3, Bax/Bcl-2 and cleaved PARP-1/PARP-1 ratio. Furthermore, ginkgolide and bilobalide also downregulated p-TAK1, p-IkBα, and p-IKKβ and inhibited the OGD/R-induced transfer of NF-κB p65 from cytoplasm to nucleus in BV2 microglia cells. The results showed that ginkgolide and bilobalide can inhibit OGD/R-induced production of inflammatory factors in BV2 microglia cells by regulating the TLRs/MyD88/NF-κB signaling pathways and attenuating inflammatory response. The possible mechanism of anti-inflammatory and neuroprotective effects of ginkgolides results from the synergistic reaction among each monomer constituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahlemeyer B, Krieglstein J (2003) Neuroprotective effects of Ginkgo biloba extract. Cell Mol Life Sci: CMLS 60:1779–1792

    Article  CAS  PubMed  Google Scholar 

  • Akira S (2009) Pathogen recognition by innate immunity and its signaling. Proc Jpn Acad Ser B, Phys Biol Sci 85:143–156

    Article  CAS  Google Scholar 

  • Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  CAS  PubMed  Google Scholar 

  • Andrieu S, Ousset PJ, Coley N, Ouzid M, Mathiex-Fortunet H, Vellas B, G. Guid Age study (2008) GuidAge study: a 5-year double blind, randomised trial of EGb 761 for the prevention of Alzheimer’s disease in elderly subjects with memory complaints. I. Rationale, design and baseline data. Curr Alzheimer Res 5:406–415

    Article  CAS  PubMed  Google Scholar 

  • Baeuerle PA, Baltimore D (1996) NF-kappa B: ten years after. Cell 87:13–20

    Article  CAS  PubMed  Google Scholar 

  • Boonyarat C, Yenjai C, Vajragupta O, Waiwut P (2014) Heptaphylline induces apoptosis in human colon adenocarcinoma cells through bid and Akt/NF-kappaB (p65) pathways. Asian Pac J Cancer Prev : APJCP 15:10483–10487

    Article  PubMed  Google Scholar 

  • Braquet P (1986) Proofs of involvement of PAF-acether in various immune disorders using BN 52021 (ginkgolide B): a powerful PAF-acether antagonist isolated from Ginkgo biloba L. Adv Prostaglandin Thromboxane Leukot Res 16:179–198

    CAS  PubMed  Google Scholar 

  • Broughton BR, Reutens DC, Sobey CG (2009) Apoptotic mechanisms after cerebral ischemia. Stroke J Cereb Circ 40:e331–e339

    Article  Google Scholar 

  • Chandrasekaran K, Mehrabian Z, Spinnewyn B, Chinopoulos C, Drieu K, Fiskum G (2003) Neuroprotective effects of bilobalide, a component of Ginkgo biloba extract (EGb 761) in global brain ischemia and in excitotoxicity-induced neuronal death. Pharmacopsychiatry 36(Suppl 1):S89–S94

    CAS  PubMed  Google Scholar 

  • De Plaen IG, Tan XD, Chang H, Wang L, Remick DG, Hsueh W (2000) Lipopolysaccharide activates nuclear factor kappaB in rat intestine: role of endogenous platelet-activating factor and tumour necrosis factor. Br J Pharmacol 129:307–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Defeudis FV (2002) Bilobalide and neuroprotection. Pharmacol Res 46:565–568

    Article  CAS  PubMed  Google Scholar 

  • Desquand S, Touvay C, Randon J, Lagente V, Vilain B, Maridonneau-Parini I, Etienne A, Lefort J, Braquet P, Vargaftig BB (1986) Interference of BN 52021 (ginkgolide B) with the bronchopulmonary effects of PAF-acether in the Guinea-pig. Eur J Pharmacol 127:83–95

    Article  CAS  PubMed  Google Scholar 

  • Dheen ST, Kaur C, Ling EA (2007) Microglial activation and its implications in the brain diseases. Curr Med Chem 14:1189–1197

    Article  CAS  PubMed  Google Scholar 

  • Doyle KP, Simon RP, Stenzel-Poore MP (2008) Mechanisms of ischemic brain damage. Neuropharmacology 55:310–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eltzschig HK, Eckle T (2011) Ischemia and reperfusion—from mechanism to translation. Nat Med 17:1391–1401

    Article  CAS  PubMed  Google Scholar 

  • Famakin B, Mou Y, Spatz M, Lawal M, Hallenbeck J (2012) Downstream toll-like receptor signaling mediates adaptor-specific cytokine expression following focal cerebral ischemia. J Neuroinflammation 9:174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh A, Roy A, Liu X, Kordower JH, Mufson EJ, Hartley DM, Ghosh S, Mosley RL, Gendelman HE, Pahan K (2007) Selective inhibition of NF-kappaB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 104:18754–18759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER III, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, C. American Heart Association Statistics and S. Stroke Statistics (2014) Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation 129:e28–e292

    Article  PubMed  Google Scholar 

  • Gu JH, Ge JB, Li M, Wu F, Zhang W, Qin ZH (2012) Inhibition of NF-kappaB activation is associated with anti-inflammatory and anti-apoptotic effects of ginkgolide B in a mouse model of cerebral ischemia/reperfusion injury. Eur J Pharm Sci: off J Eur Fed Pharm Sci 47:652–660

    Article  CAS  Google Scholar 

  • Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132:344–362

    Article  CAS  PubMed  Google Scholar 

  • Hou J, Wang J, Zhang P, Li D, Zhang C, Zhao H, Fu J, Wang B, Liu J (2012) Baicalin attenuates proinflammatory cytokine production in oxygen-glucose deprived challenged rat microglial cells by inhibiting TLR4 signaling pathway. Int Immunopharmacol 14:749–757

    Article  CAS  PubMed  Google Scholar 

  • Huang CY, Fujimura M, Noshita N, Chang YY, Chan PH (2001) SOD1 down-regulates NF-kappaB and c-Myc expression in mice after transient focal cerebral ischemia. J Cereb Blood Flow Metab : Off J Int Soc Cereb Blood Flow Metab 21:163–173

    Article  CAS  Google Scholar 

  • Hyakkoku K, Hamanaka J, Tsuruma K, Shimazawa M, Tanaka H, Uematsu S, Akira S, Inagaki N, Nagai H, Hara H (2010) Toll-like receptor 4 (TLR4), but not TLR3 or TLR9, knock-out mice have neuroprotective effects against focal cerebral ischemia. Neuroscience 171:258–267

    Article  CAS  PubMed  Google Scholar 

  • Iadecola C, Alexander M (2001) Cerebral ischemia and inflammation. Curr Opin Neurol 14:89–94

    Article  CAS  PubMed  Google Scholar 

  • Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17:796–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaracz S, Malik S, Nakanishi K (2004) Isolation of ginkgolides a, B, C, J and bilobalide from G. biloba extracts. Phytochemistry 65:2897–2902

    Article  CAS  PubMed  Google Scholar 

  • Jauch EC, Saver JL, Adams HP Jr, Bruno A, Connors JJ, Demaerschalk BM, Khatri P, McMullan PW Jr, Qureshi AI, Rosenfield K, Scott PA, Summers DR, Wang DZ, Wintermark M, Yonas H, C. American Heart Association Stroke, N. Council on Cardiovascular, D. Council on Peripheral Vascular and C. Council on Clinical (2013) Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke J Cereb Cir 44:870–947

    Article  Google Scholar 

  • Jiang M, Li J, Peng Q, Liu Y, Liu W, Luo C, Peng J, Li J, Yung KK, Mo Z (2014) Neuroprotective effects of bilobalide on cerebral ischemia and reperfusion injury are associated with inhibition of pro-inflammatory mediator production and down-regulation of JNK1/2 and p38 MAPK activation. J Neuroinflammation 11:167

    Article  PubMed  PubMed Central  Google Scholar 

  • Jordan MS, Singer AL, Koretzky GA (2003) Adaptors as central mediators of signal transduction in immune cells. Nat Immunol 4:110–116

    Article  CAS  PubMed  Google Scholar 

  • Kacimi R, Giffard RG, Yenari MA (2011) Endotoxin-activated microglia injure brain derived endothelial cells via NF-kappaB, JAK-STAT and JNK stress kinase pathways. J Inflamm 8:7

    Article  CAS  Google Scholar 

  • Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441:431–436

    Article  CAS  PubMed  Google Scholar 

  • Kaushal V, Schlichter LC (2008) Mechanisms of microglia-mediated neurotoxicity in a new model of the stroke penumbra. J Neurosci: Off J Soc Neurosci 28:2221–2230

    Article  CAS  Google Scholar 

  • Kawai T, Adachi O, Ogawa T, Takeda K, Akira S (1999) Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11:115–122

    Article  CAS  PubMed  Google Scholar 

  • Kleijnen J, Knipschild P (1992) Ginkgo biloba. Lancet 340:1136–1139

    Article  CAS  PubMed  Google Scholar 

  • Ko HM, Jung HH, Seo KH, Kang YR, Kim HA, Park SJ, Lee HK, Im SY (2006) Platelet-activating factor-induced NF-kappaB activation enhances VEGF expression through a decrease in p53 activity. FEBS Lett 580:3006–3012

    Article  CAS  PubMed  Google Scholar 

  • Lehnardt S, Lehmann S, Kaul D, Tschimmel K, Hoffmann O, Cho S, Krueger C, Nitsch R, Meisel A, Weber JR (2007) Toll-like receptor 2 mediates CNS injury in focal cerebral ischemia. J Neuroimmunol 190:28–33

    Article  CAS  PubMed  Google Scholar 

  • Liu YG, Li FJ, Wang J, Wang XD (2010) [Effects of ginkgolide B on inflammation induced by cerebral ischemia-reperfusion in rats]. Zhong yao cai Zhongyaocai. J Chin Med Mater 33:578–580

    CAS  Google Scholar 

  • Luan H, Kan Z, Xu Y, Lv C, Jiang W (2013) Rosmarinic acid protects against experimental diabetes with cerebral ischemia: relation to inflammation response. J Neuroinflammation 10:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv M, Liu Y, Zhang J, Sun L, Liu Z, Zhang S, Wang B, Su D, Su Z (2011a) Roles of inflammation response in microglia cell through toll-like receptors 2/interleukin-23/interleukin-17 pathway in cerebral ischemia/reperfusion injury. Neuroscience 176:162–172

    Article  CAS  PubMed  Google Scholar 

  • Lv P, Fang W, Geng X, Yang Q, Li Y, Sha L (2011b) Therapeutic neuroprotective effects of ginkgolide B on cortex and basal ganglia in a rat model of transient focal ischemia. Eur J Pharm Sci: Off J Eur Fed Pharm Sci 44:235–240

    Article  CAS  Google Scholar 

  • Ma S, Liu H, Jiao H, Wang L, Chen L, Liang J, Zhao M, Zhang X (2012) Neuroprotective effect of ginkgolide K on glutamate-induced cytotoxicity in PC 12 cells via inhibition of ROS generation and Ca (2+) influx. Neurotoxicology 33:59–69

    Article  CAS  PubMed  Google Scholar 

  • Maclennan KM, Darlington CL, Smith PF (2002) The CNS effects of Ginkgo biloba extracts and ginkgolide B. Prog Neurobiol 67:235–257

    Article  CAS  PubMed  Google Scholar 

  • McDermott EP, O’Neill LA (2002) Ras participates in the activation of p38 MAPK by interleukin-1 by associating with IRAK, IRAK2, TRAF6, and TAK-1. J Biol Chem 277:7808–7815

    Article  CAS  PubMed  Google Scholar 

  • Moon JB, Lee CH, Park CW, Cho JH, Hwang IK, Yoo KY, Choi JH, Shin HC, Won MH (2009) Neuronal degeneration and microglial activation in the ischemic dentate gyrus of the gerbil. J Vet Med Sci Jpn Soc Vet Sci 71:1381–1386

    Article  Google Scholar 

  • Murray CJ, Lopez AD (1997) Mortality by cause for eight regions of the world: global burden of disease study. Lancet 349:1269–1276

    Article  CAS  PubMed  Google Scholar 

  • Muzio M, Ni J, Feng P, Dixit VM (2013) Pillars article: IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science. 1997 278:1612–1615 Journal of immunology, 190, 16–19

    Google Scholar 

  • Nagy K, Domoki F, Bari F (2005) Ischemic preconditioning in the brain. Ideggyogyaszati szemle 58:305–313

    PubMed  Google Scholar 

  • Neubert M, Ridder DA, Bargiotas P, Akira S, Schwaninger M (2011) Acute inhibition of TAK1 protects against neuronal death in cerebral ischemia. Cell Death Differ 18:1521–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuhaus W, Burek M, Djuzenova CS, Thal SC, Koepsell H, Roewer N, Forster CY (2012) Addition of NMDA-receptor antagonist MK801 during oxygen/glucose deprivation moderately attenuates the upregulation of glucose uptake after subsequent reoxygenation in brain endothelial cells. Neurosci Lett 506:44–49

    Article  CAS  PubMed  Google Scholar 

  • Ni Q, Wang J, Li EQ, Zhao AB, Yu B, Wang M, Huang CR (2011) Study on the protective effect of the mixture of Shengmai powder and Danshen decoction on the myocardium of diabetic cardiomyopathy in the rat model. Chin J Integr Med 17:116–125

    Article  PubMed  Google Scholar 

  • Nishi T, Maier CM, Hayashi T, Saito A, Chan PH (2005) Superoxide dismutase 1 overexpression reduces MCP-1 and MIP-1 alpha expression after transient focal cerebral ischemia. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab 25:1312–1324

    Article  CAS  Google Scholar 

  • O’Neill LA (2002) Toll-like receptor signal transduction and the tailoring of innate immunity: a role for Mal? Trends Immunol 23:296–300

    Article  PubMed  Google Scholar 

  • O’Neill LA (2003) The role of MyD88-like adapters in toll-like receptor signal transduction. Biochem Soc Trans 31:643–647

    Article  PubMed  Google Scholar 

  • Park JS, Gamboni-Robertson F, He Q, Svetkauskaite D, Kim JY, Strassheim D, Sohn JW, Yamada S, Maruyama I, Banerjee A, Ishizaka A, Abraham E (2006) High mobility group box 1 protein interacts with multiple toll-like receptors. Am J Phys Cell Phys 290:C917–C924

    Article  CAS  Google Scholar 

  • Peng SY, Liao WH, Nie ZG, Liu Y, Wang L, Wang F, Wang WJ (2010) [effect of ginkgolide B on the production of NO, IL-6 and RANTES from astrocytes]. Yao xue xue bao. Acta Pharm Sin 45:1103–1108

    CAS  Google Scholar 

  • Pradillo JM, Fernandez-Lopez D, Garcia-Yebenes I, Sobrado M, Hurtado O, Moro MA, Lizasoain I (2009) Toll-like receptor 4 is involved in neuroprotection afforded by ischemic preconditioning. J Neurochem 109:287–294

    Article  CAS  PubMed  Google Scholar 

  • Qin X, Sun ZQ, Dai XJ, Mao SS, Zhang JL, Jia MX, Zhang YM (2012) Toll-like receptor 4 signaling is involved in PACAP-induced neuroprotection in BV2 microglial cells under OGD/reoxygenation. Neurol Res 34:379–389

    Article  CAS  PubMed  Google Scholar 

  • Qin X, Sun ZQ, Zhang XW, Dai XJ, Mao SS, Zhang YM (2013) TLR4 signaling is involved in the protective effect of propofol in BV2 microglia against OGD/reoxygenation. J Physiol Biochem 69:707–718

    Article  CAS  PubMed  Google Scholar 

  • Ridder DA, Schwaninger M (2009) NF-kappaB signaling in cerebral ischemia. Neuroscience 158:995–1006

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T, Matsumoto K, Takeuchi O, Akira S (2005) Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol 6:1087–1095

    Article  CAS  PubMed  Google Scholar 

  • Schaller B, Graf R (2004) Cerebral ischemia and reperfusion: the pathophysiologic concept as a basis for clinical therapy. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab 24:351–371

    Article  Google Scholar 

  • Schwarzkopf TM, Koch KA, Klein J (2013) Neurodegeneration after transient brain ischemia in aged mice: beneficial effects of bilobalide. Brain Res 1529:178–187

    Article  CAS  PubMed  Google Scholar 

  • Shim JH, Xiao C, Paschal AE, Bailey ST, Rao P, Hayden MS, Lee KY, Bussey C, Steckel M, Tanaka N, Yamada G, Akira S, Matsumoto K, Ghosh S (2005) TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev 19:2668–2681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JA, Das A, Ray SK, Banik NL (2012) Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull 87:10–20

    Article  CAS  PubMed  Google Scholar 

  • Son HY, Han HS, Jung HW, Park YK (2009) Panax notoginseng attenuates the infarct volume in rat ischemic brain and the inflammatory response of microglia. J Pharmacol Sci 109:368–379

    Article  CAS  PubMed  Google Scholar 

  • Sosna J, Voigt S, Mathieu S, Lange A, Thon L, Davarnia P, Herdegen T, Linkermann A, Rittger A, Chan FK, Kabelitz D, Schutze S, Adam D (2014) TNF-induced necroptosis and PARP-1-mediated necrosis represent distinct routes to programmed necrotic cell death. Cell Mol life Sci: CMLS 71:331–348

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:1–14

    Article  CAS  PubMed  Google Scholar 

  • Tang SC, Arumugam TV, Xu X, Cheng A, Mughal MR, Jo DG, Lathia JD, Siler DA, Chigurupati S, Ouyang X, Magnus T, Camandola S, Mattson MP (2007) Pivotal role for neuronal toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci U S A 104:13798–13803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vabulas RM, Ahmad-Nejad P, da Costa C, Miethke T, Kirschning CJ, Hacker H, Wagner H (2001) Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 276:31332–31339

    Article  CAS  PubMed  Google Scholar 

  • Vallabhapurapu S, Karin M (2009) Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27:693–733

    Article  CAS  PubMed  Google Scholar 

  • van Dongen MC, van Rossum E, Kessels AG, Sielhorst HJ, Knipschild PG (2000) The efficacy of ginkgo for elderly people with dementia and age-associated memory impairment: new results of a randomized clinical trial. J Am Geriatr Soc 48:1183–1194

    Article  PubMed  Google Scholar 

  • Vieira M, Fernandes J, Carreto L, Anuncibay-Soto B, Santos M, Han J, Fernandez-Lopez A, Duarte CB, Carvalho AL, Santos AE (2014) Ischemic insults induce necroptotic cell death in hippocampal neurons through the up-regulation of endogenous RIP3. Neurobiol Dis 68:26–36

    Article  CAS  PubMed  Google Scholar 

  • Vilhardt F (2005) Microglia: phagocyte and glia cell. Int J Biochem Cell Biol 37:17–21

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Cho CH (2010) Effect of NF-kappaB signaling on apoptosis in chronic inflammation-associated carcinogenesis. Curr Cancer Drug Targets 10:593–599

    Article  PubMed  Google Scholar 

  • Wang XX, Shang YP, Chen JZ, Zhu JH, Guo XG, Sun J (2004) [Effects of Ginkgo biloba extract on number and activity of endothelial progenitor cells from peripheral blood]. Yao xue xue bao = Acta Pharm Sin 39:656–660

    CAS  Google Scholar 

  • Wang Q, Tang XN, Yenari MA (2007) The inflammatory response in stroke. J Neuroimmunol 184:53–68

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Qin ZH, Shi H, Savitz SI, Qin AP, Jiang Y, Zhang HL (2008) Protective effect of Ginkgolids (A + B) is associated with inhibition of NIK/IKK/IkappaB/NF-kappaB signaling pathway in a rat model of permanent focal cerebral ischemia. Brain Res 1234:8–15

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Li H, Shi H, Sun B (2012a) Pro-apoptotic role of nuclear factor-kappaB in adriamycin-induced acute myocardial injury in rats. Mol Med Rep 5:400–404

    CAS  PubMed  Google Scholar 

  • Wang J, Hou J, Zhang P, Li D, Zhang C, Liu J (2012b) Geniposide reduces inflammatory responses of oxygen-glucose deprived rat microglial cells via inhibition of the TLR4 signaling pathway. Neurochem Res 37:2235–2248

    Article  CAS  PubMed  Google Scholar 

  • Weinstein JR, Koerner IP, Moller T (2010) Microglia in ischemic brain injury. Future Neurol 5:227–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welz PS, Wullaert A, Vlantis K, Kondylis V, Fernandez-Majada V, Ermolaeva M, Kirsch P, Sterner-Kock A, van Loo G, Pasparakis M (2011) FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature 477:330–334

    Article  CAS  PubMed  Google Scholar 

  • Winters L, Winters T, Gorup D, Mitrecic D, Curlin M, Kriz J, Gajovic S (2013) Expression analysis of genes involved in TLR2-related signaling pathway: inflammation and apoptosis after ischemic brain injury. Neuroscience 238:87–96

    Article  CAS  PubMed  Google Scholar 

  • Wong ET, Tergaonkar V (2009) Roles of NF-kappaB in health and disease: mechanisms and therapeutic potential. Clin Sci 116:451–465

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Qian Z, Ke Y, Du F, Zhu L (2009) Ginkgolide B preconditioning protects neurons against ischaemia-induced apoptosis. J Cell Mol Med 13:4474–4483

    Article  CAS  PubMed  Google Scholar 

  • Xia SH, Fang DC (2007) Pharmacological action and mechanisms of ginkgolide B. Chin Med J 120:922–928

    CAS  PubMed  Google Scholar 

  • Xu Y, Wang J, Song X, Wei R, He F, Peng G, Luo B (2016) Protective mechanisms of CA074-me (other than cathepsin-B inhibition) against programmed necrosis induced by global cerebral ischemia/reperfusion injury in rats. Brain Res Bull 120:97–105

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, K. S, Shibuya H, Irie K, Oishi I, Ueno N, et al. (1995) Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science 270:2008–2011

    Article  CAS  PubMed  Google Scholar 

  • Yin B, Xu Y, Wei RL, He F, Luo BY, Wang JY (2015) Inhibition of receptor-interacting protein 3 upregulation and nuclear translocation involved in Necrostatin-1 protection against hippocampal neuronal programmed necrosis induced by ischemia/reperfusion injury. Brain Res 1609:63–71

    Article  CAS  PubMed  Google Scholar 

  • Yun HJ, Yoon JH, Lee JK, Noh KT, Yoon KW, Oh SP, Oh HJ, Chae JS, Hwang SG, Kim EH, Maul GG, Lim DS, Choi EJ (2011) Daxx mediates activation-induced cell death in microglia by triggering MST1 signalling. EMBO J 30:2465–2476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Potrovita I, Tarabin V, Herrmann O, Beer V, Weih F, Schneider A, Schwaninger M (2005) Neuronal activation of NF-kappaB contributes to cell death in cerebral ischemia. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab 25:30–40

    Article  Google Scholar 

  • Zhang P, Cox CJ, Alvarez KM, Cunningham MW (2009a) Cutting edge: cardiac myosin activates innate immune responses through TLRs. J Immunol 183:27–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Chen C, Lu J, Xie M, Pan D, Luo X, Yu Z, Dong Q, Wang W (2009b) Cell cycle inhibition attenuates microglial proliferation and production of IL-1beta, MIP-1alpha, and NO after focal cerebral ischemia in the rat. Glia 57:908–920

    Article  PubMed  Google Scholar 

  • Zhang J, Yang J, Zhang C, Jiang X, Zhou H, Liu M (2012) Calcium antagonists for acute ischemic stroke. Cochrane Database Syst Rev 5:CD001928

    Google Scholar 

  • Zhu GY, Zhu XL, Geng QX, Zhang X, Shao J (2004) [Change of peripheral blood monocytes derived macrophage scavenger receptors activity in patients with coronary heart disease, and the intervention effect of Ginkgo biloba extract]. Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi = Chinese journal of integrated traditional and Western medicine / Zhongguo Zhong xi yi jie he xue hui. Zhongguo Zhong yi yan jiu yuan zhu ban 24:1069–1072

    Google Scholar 

  • Ziegler G, Harhausen D, Schepers C, Hoffmann O, Rohr C, Prinz V, Konig J, Lehrach H, Nietfeld W, Trendelenburg G (2007) TLR2 has a detrimental role in mouse transient focal cerebral ischemia. Biochem Biophys Res Commun 359:574–579

    Article  CAS  PubMed  Google Scholar 

  • Zwagerman N, Plumlee C, Guthikonda M, Ding Y (2010) Toll-like receptor-4 and cytokine cascade in stroke after exercise. Neurol Res 32:123–126

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by New Drug Discovery of Ministry of Science and Technology of China: Modern Chinese medicine innovation cluster and Digital pharmaceutical technology platform (2013zx0940203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Ming Zhou.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, JM., Gu, SS., Mei, W.H. et al. Ginkgolides and bilobalide protect BV2 microglia cells against OGD/reoxygenation injury by inhibiting TLR2/4 signaling pathways. Cell Stress and Chaperones 21, 1037–1053 (2016). https://doi.org/10.1007/s12192-016-0728-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-016-0728-y

Keywords

Navigation